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The solution of nonconvex parameter estimation problems with deterministic global optimization methods
is desirable but challenging, especially if large measurement datasets are considered. We propose to exploit
the structure of this class of optimization problems to enable their solution with the spatial branch-and-bound
algorithm. In detail, we start with a reduced dataset in the root node and progressively augment it, converging
to the full dataset. We show for nonlinear programs (NLPs) that our algorithm converges to the global solution

of the original problem considering the full dataset. The implementation of the algorithm extends our open-
source solver MAINGO. A numerical case study with a mixed-integer nonlinear program (MINLP) from chemical
engineering and a dynamic optimization problem from biochemistry both using noise-free measurement data
emphasizes the potential for savings of computational effort with our proposed approach.

1. Introduction

Parameter estimation is typically required to obtain accurate mod-
els for the simulation and optimization of real-world processes from
industry, the prediction of the performance of drugs and therapies in
medicine, or various other applications (e.g., Almquist et al., 2014;
Fischler & Bolles, 1981; Gau & Stadtherr, 2002). Estimating the pa-
rameters of nonlinear models often leads to nonconvex mixed-integer
nonlinear programs (MINLPs) which are typically solved with local and
heuristic global optimization methods (see, e.g., Abbiw-Jackson et al.,
2006; Egea et al., 2010; Liu & Sahinidis, 1997). But only deterministic
global optimization (DGO) methods can prove that a model candidate
is not suitable for predicting the given measurement data (Mitsos
et al., 2009; Singer & Barton, 2006). However, large-scale MINLPs
are challenging for existing DGO methods (Boukouvala et al., 2016;
Floudas, 2000; Horst & Pardalos, 1995). Thus, we propose to exploit
the structure of parameter estimation problems to enable the solution
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in presence of large datasets. In particular, we focus on the spatial
branch-and-bound (B&B) algorithm (Horst & Tuy, 1996; Tawarmalani
& Sahinidis, 2002).

In previous case studies (Sass et al., 2023), we observed that reduc-
ing the size of the dataset has the potential to save computational effort
while retaining the order of magnitude of lower and upper bounds on
the optimal solution of the base problem. Based on these results, we
propose to start with a reduced dataset in the root node of the B&B tree
and extend it subsequently within the B&B procedure converging to
the full dataset, i.e., the original problem formulation, after a finite
number of iterations. For this, we introduce augmentation rules which
decide in each node whether to augment the dataset or to branch. With
such growing datasets, we aim at pruning obviously suboptimal regions
based on a reduced and, thus, computationally less costly model, while
eventually we still determine a global solution of the full problem.

Our approach has similarities to the widely-known usage of stochas-
tic gradient descent algorithms or batch gradient descent algorithms

0377-2217/© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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to make the training of large-scale models in machine learning (e.g.,
Byrd et al.,, 2016; Murphy, 2022) or appointment scheduling (Pan
et al., 2021) tractable. However, while these approaches are used to
speed up local optimization procedures, we obtain a DGO method.
In fact, we extend the proof of convergence to the global optimum
for a B&B algorithm applied to nonlinear programs (NLPs) given in
Theorem 5.26 of Locatelli and Schoen (2013). As another difference,
the (mini)batches or single data points in the aforementioned local
optimization procedures are regularly resampled, typically without
changing the number of data points, in the respective machine learning
approaches. Similarly, Agosti et al. (2020) iteratively update their
reduced order model without changing its size based on information
from the full order model to estimate patient-specific parameters of a
tumor growth model. In contrast to that, we increase the size of the
reduced dataset gradually as done for infinite sum problems (see, e.g.,
Beyhaghi et al., 2020) or in stochastic optimization (Rulliere et al.,
2013). While the latter two approaches cannot know the true final
dataset, our final dataset is given by the fixed full dataset provided with
the model.

We investigate the numerical performance of the proposed B&B al-
gorithm with growing datasets in a case study optimizing the equa-
tion of state of propane (Lemmon et al., 2009; Sass et al., 2023) as
well as a dynamic model coding metabolic pathways (Moles et al.,
2003; Villaverde et al., 2019) based on noise-free synthetic measure-
ment data. For this, we implement the extension for handling growing
datasets in our open-source solver MAINGO' for the DGO of fac-
torable MINLPs (Bongartz et al., 2018). MAINGO uses McCormick
relaxations (McCormick, 1976; Tsoukalas & Mitsos, 2014) within the
lower bounding procedure, whereas widely used DGO solvers like
BARON (Tawarmalani & Sahinidis, 2005) apply the auxiliary variables
method (AVM) (Smith & Pantelides, 1997; Tawarmalani & Sahinidis,
2002, 2004, 2005) to obtain convex relaxations. While the number
of optimization variables treated within the B&B algorithm remains
constant by McCormick relaxations, AVM adds more auxiliary opti-
mization variables as more (nonlinear) terms are included in the model
functions and, thus, as a greater number of data points are considered.
Aside from that, the use of McCormick relaxations makes MAINGO
particularly suitable for reduced-space formulations (Bongartz & Mit-
sos, 2017; Mitsos et al.,, 2009), meaning again that the number of
constraints and optimization variables does not necessarily grow with
the size of the dataset. In other words, the size of the dataset mainly
affects the computational costs for function evaluations rather than
the size of the optimization problem solved. Consequently, we expect
that the extension to growing datasets is even more advantageous for
AVM-based solvers like BARON, especially when working with full-
space formulations within these. However, a general study on the
performance of different DGO solvers as well as implementing the
proposed extension in third-party DGO solvers is not in scope of this
study since these solvers are either not open-source or have a too
complex code structure.

The remainder of this article is structured as follows. In Section 2,
we introduce our key ideas on how to incorporate and exploit growing
datasets including our so-called augmentation rules in Sections 2.1
and 2.2. An overview of the B&B algorithm with growing datasets as
well as its proof of convergence follows in Section 3. In Section 4, we
present numerical results for our case study, before we conclude in
Section 5. Basic definitions used in the proof of convergence are given
in Appendix A.

1 Available at https://git.rwth-aachen.de/avt-svt/public/maingo.
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2. Parameter estimation exploiting growing datasets

We focus on solving the general parameter estimation problem

=! &p
. 2
min Y (fGxz:p) - ya) (PE)
PEP
(x4,y4)ED
s.t. h(xy,y4:p) <0 Vd=1,...,|D|
h(p) <0,

where p € P with a closed, bounded box P ¢ R” are the unknown
parameters, D = {(x,y;), (X3, ),...} € R" X R denotes the full set of
measurement data, f(-;p) : R” — R is a general parameterized model
function, h(x,,y,;-) : P — R is the residual of an inequality constraint
in dependence of a single data point (x,,y,) € D, and h:P - Risthe
residual of a data-independent inequality constraint on the parameters.
Note that we restrict ourselves to one constraint A(x,, y,;-) and h only
to keep the notation simple. All statements follow analogously for
multiple constraints with the same general properties. In the theoretical
considerations, we focus on continuous-valued optimization parameters
p € R" as done by Locatelli and Schoen (2013). In the numerical case
study, we solve an MINLP. For this, we interpret “closed, bounded box”
for unknown integer parameters p € Z"¢ as subsequent discrete values.
While the general model formulation (PE) allows for error-prone data
D, we use data generated by the model, i.e., data with f(x;; p*) = y,
for any (x;,y,;) € D for optimal parameter values p*, for a first case
study. Please refer to the supplementary material for more details.
Throughout, | - | denotes the cardinality, E[-] the expected value, and
P(-) the probability of their arguments.
Returning to theory, we make the following assumptions.

Assumption 1.
Let f(x4;-) P — R and h(xg, y,-) P — R for any fixed
(x4,y4) € D as well as h : P - R be continuous.

For conciseness of notation, we denote the squared deviation be-
tween measurements and model predictions by g(p; x,, y,) := ( f(x4:p)
—yﬂ,)2 for any d € {1,...,|D|}, p € P and the summed squared error
(SE) of model predictions and measurements for any set D, C D by
gDr(p) = Z(Xd~Yd)EDr gD X4, ¥4)-

As the key idea behind the proposed extension of a B&B algorithm,
we split the overall error into the error terms of each single data point.
Consequently, we add another assumption.

Assumption 2.

(i) Let g®(-;x,,y,) be any nonnegative convex underestimator of
g(-;x4,y,) over P for any fixed (x,,y,) € D.

(i) Let A®(x,,y;;-) and 7Y be any convex underestimator of
h(x4,y4;-) for any fixed (x;,y,) € D and 71, respectively, over
P.

For any set D, C D, we define gg’r(p) = Z(xdeA)EDr g% (s x4, ¥4)
and obtain the following Lemma.

Lemma 1. Let Assumptions 1 and 2 hold. Then,

@) gg’r(p) is a convex underestimator of both g;, and gy, over P for
any D, C D,
(ii) a lower bound on the globally optimum solution of (PE) is given for
any D, C D by
: cv
o <5

st (x4, y4:p) <0 (@D

"(p) <0,

V(x4,y4) € Dy

(iii) gp(p) is an upper bound on the globally optimum solution of (PE)
for any p € P satisfying all inequality constraints.
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Subroutine 1: Augment or branch at iteration k

Input: Set of active nodes N}, set of fathomed nodes WV, kf,
currently processed node N, = (P,, D,), augmentation
rule A, augmentation size ¢, full dataset D
Output: Updated sets N, and V| ,f .l
1 if A(N,) =True then
2 Choose D, € D\ D, such that
|Dyew| = min{[@ - [DI] . D\ Dyl};

3 | N := (P, D,UDy);
4 Nig1 1= (N \ Ny u New;
5 else
6 Branch N, by partitioning P, = P, jUP;, U ... ;
7 Noewl = (P, |, D), N%W2 := (P 5. D), ... ;
8 | N i= W\ N)UNmewly ynew2 g
9 end
f _ f .
10 N, =N UNg

The proof of Lemma 1 follows from our definitions and since the
sum of convex underestimators is a convex underestimator of the
sum for continuous functions. In particular, the nonnegativity of the
squared error terms and of the convex underestimators as stated in
Assumption 2i yields the statement in Lemma 1i. Note that applying
h(x,,y45p) < 0 for any (x;.y;) € D, just means to skip some
constraints from (PE) if D, ¢ D. If lower bounding problem (1) is
feasible, we denote an optimum point of (1) by p

With Lemma 1, we gain valid lower bounds on the solution of (PE)
utilizing reduced datasets. Meaning, we can potentially save computa-
tional effort for the solution of (PE) by utilizing a smaller model for
the calculations of convex relaxations to obtain convex problem (1), its
linearization and the subsequent linear optimization within the lower
bounding procedure. Similarly, we can obtain a valid upper based on
a smaller model if we plug in a solution point from a local nonlinear
optimization of the reduced problem into the original problem and this
point turns out to be feasible for the full dataset as well. For the further
analysis of lower and upper bounds, we denote with full lower bound
and reduced lower bound the lower bound calculated based on the full
dataset and based on a reduced dataset, respectively.

The downside of the reduced lower bound being valid is that it is
potentially less tight than the full lower bound. If the gap between
reduced and full lower bound prevents pruning, the B&B tree grows
larger than necessary which may completely nullify the time savings
due to data reduction. In fact, there are two reasons potentially pre-
venting pruning when using a reduced dataset for lower bounding: (i)
the full lower bound would also be smaller than the current upper
bound, or (ii) the full lower bound would be larger than the current
upper bound but the approximate reduced lower bound is not. In case
(i), we want to branch the node to narrow down the region containing
the optimal solution. In case (ii), we want to augment the dataset to
decrease the gap between reduced and full lower bound. However, we
only have information on the reduced lower bound at the beginning
of the proposed B&B algorithm and, thus, do not know which case we
are in. For the decision whether to branch or augment, we therefore
introduce augmentation rules.

We associate all nodes of the B&B tree with a parameter domain and
a dataset. An augmentation rule A : N — {True,False} decides in each
B&B iteration k for the processed node N, = (P,,D,) € N whether to
branch parameter domain P, € P, which means adding child nodes
whose parameter domains form a partition of domain P, (see, e.g.,
Belotti et al.,, 2009; Horst & Tuy, 1996; Locatelli & Schoen, 2013;
Tawarmalani & Sahinidis, 2002), or whether to augment dataset D, C
D, see Subroutine 1. Note that the child node inherits the parameter
domain P, of its parent node when augmenting. For the time being,
we pick the additional data points D, randomly from D \ D,. The
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number of data points to be added is determined by an a-priori given
augmentation size ¢ € (0, 1] which gives the fraction of the full dataset
to be added. For example, with |D| = 100 and ¢ = 0.25 we would add
25% of the full dataset, i.e., 25 new data points, when augmenting.
With an initial dataset containing of 10% of the available data points,
the augmentation procedure would determine four different reduced
datasets containing 10, 35, 60, and 85 data points. For the proof of
convergence, we will use augmentation rules which eventually lead to
the full dataset, i.e., which complete finitely.

Definition 1. Let D, C D be the dataset used in node N, which is
processed in iteration k of the B&B algorithm with growing datasets
depicted in Fig. 1.

The augmentation rule A : N — {True,False} completes finitely,
if for any infinite nested sequence of nodes {Ni, oo with Ny, =
(P, Dy it holds 3/ < 00 : Dy =D Vj 2 J.

Note that we have Pk C Py and Dk 2 Dk for any two
nodes Ny, ,Nk with j, > J| in an infinite nested sequence of nodes
{N, K, }jseo smce we either branch the parameter domain and keep the
dataset or augment the dataset and keep the parameter domain in each
iteration of the B&B algorithm.

2.1. Augmentation rule cONST

An intuitive augmentation rule is to augment every cth iteration of
the B&B algorithm with growing datasets, where ¢ € N is an a-priori
given constant. However, depending on the node selection strategy,
such a rule would pick nodes at different depths within the B&B tree
for augmenting. In the absence of additional information, we therefore
augment if the depth of the current node is a multiple of constant ¢
instead. We obtain an augmentation rule which completes finitely.

Proposition 1. Let an initial dataset D,y C D be given. If the augmentation
step defined in Subroutine 1 is performed with a constant augmentation size
@ € (0, 1], then augmentation rule

- depth(Ny)
True, if —* e€Z
Aconst(Ny) 1= { ¢

False, else

with an a-priori known constant ¢ € Z completes finitely.

Proof. Let {Ni, oo with Ny, = (P, Dy) be a sequence of nested
nodes generated by the B&B algorithm with growing datasets. By
definition, we have depth(Nk/) = j for any sequence of nested nodes
starting with the root node.

We need / := [ll[)l ‘ lDDﬁ)‘] subsequent augmentations to reach the
full dataset. According to augmentation rule A, augmentation is
triggered every cth depth. Thus, we obtain the full dataset in nodes

with depth / - ¢, i.e,, forany j > J with J :=1-¢c. [
2.2. Augmentation rule SCALING

The more sophisticated augmentation rule scaLing aims to branch
if we could have pruned the node when using the full lower bound.
As we do not know the full lower bound, we estimate the full lower
bound by scaling the reduced lower bound. In particular, we assume in
this section that a solution of the lower bounding problem (1) exists,
i.e., that there is a feasible point in this node. Otherwise, the node will
be pruned without augmenting or branching.

As indicated by our results in Sass et al. (2023), we assume that the
mean squared error does not change significantly when changing the
dataset

1
D, | 2

' (x4,y4)EDy

> &V Pixgva) @

(x4,4)ED

1
eV . ~
8 (D Xy, yg) R _|D|
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»

End
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v

Lower Bounding

v

Upper Bounding

Augment?

‘ Branching < extension

v

Update set of
active nodes

Fig. 1. Flow chart of the proposed algorithm, where the dashed boxes highlight the extensions of a common B&B algorithm to manage growing datasets.

Augment data
set of node

or fulfills at least a sublinear relation where ub, is the best upper bound found until iteration k of the
B&B algorithm which is also used for pruning in node N,. Note that

1 Z V(P xgyy) < 1 Z (P x4, vy) - 3) both assumptions (2) and (3) may be violated, particularly in models
ID:| (¥q-Ya)EDy DI (x4-y4)€ED sensitive to single data points. Therefore, the condition used in scaLing*

is a heuristic.
We obtain the rule

For a fixed dataset D, see Assumption 3, we can show that augment-
A* ing via scaLiNG is most likely triggered only if we could prune based on

SCALING

.c ID
(V) = True, if IlTrll ~g;‘3"r(plgr) >ub, — ¢
. False, else, the full dataset. Note that dataset D may still contain deviations from
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Table 1
Datasets, corresponding optimal objective and scaled optimal objective for the

estimation problem described in Example 1.

Data points Opt. obj. Opt. obj. scaled with I‘ZEJ”I
D, = {(0,0.6)} 0.0 3.0=0

= {(0,0.6).(0, )} 0.08 2.008=0.12
D ={(0,0),(0,0.6), (0, 1)} 0.5067 0.5067

the model predictions with the true model parameters. However, in this
article, we do not account for any random behavior in the data.

Assumption 3.

(i) The full dataset D is non-random, i.e., D is a fixed set and not
considered as a random sample.

(ii) Let D, ¢ D be a reduced dataset with an a-priori fixed size,
where the data points in D, are picked randomly from D such
that D, follows a discrete uniform probability distribution over
all subsets of D with size |D,|.

Lemma 2. If D, ¢ D is chosen according to Assumption 3, then

E[g ]_ IDrll ¥(pb).

Proof. The monotonicity of the expected value and the optimality
of plb yield E [g“" (p”J <E [gc" (plb)] From the discrete uniform
distribution assumptlon it follows for any single data point (x,,y,) € D
that P((x4,y;) € D,) = Dl In combination with the linearity of

2]
expectation, we obtain IE[ v (ph )] = llgll g5 (p ). O

Theorem 1. Let Assumptions 1 and 2 hold and € > 0 be given. Let
D, ¢ D be chosen according to Assumptions 3. Assume augmentation rule

True, ifp-
Ascuno(N) 1= {False, else

1D

cv (lb
in, 8p,Pp,) 2 ub—¢

(5)

with upper bound ub computed for currently active node N, and a constant
O0<p<l

If e < ub and g5 < ub — ¢, then the probability for augmenting is less
than p.

Proof. Due to the nonnegativity of ¢ and &€ < ub & ub—¢ > 0, we can
apply Markov’s inequality
- (ub — 5))

D
JP’(/%% Cv(p )>ub—e>= <Cv(p ) > —
Eg“(p )
2]

IDI

Dl 1
DI »

O

Theorem 1 gives us a theoretical bound on the probability that
Ay triggered augmenting although we could not prune the node
based on the full lower bound. Note that we introduced an augmen-
tation weight p into AY, - (4) to obtain Ay, . (5) such that we can
investigate the numerical behavior based on different bounds on the
probability. Note further that condition ¢ < ub is a weak assumption,
since £ > ub implies that the B&B algorithm has already converged if ¢
is the optimality tolerance.

We expect augmentation rule Ay, . to be true sufficiently often to
reach the full dataset. However, there are pathological cases where this
augmentation rule does not complete finitely.

With Lemma 2 and 0 < gCD" < ub — ¢, the statement follows.

Example 1 (Conflicting Data Prevents Convergence). We want to solve

min (a— 1? + (a—0.6)% + (a—0)?,
a€(0,25]
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where we find a linear function f(x;a) = a - x through the origin and
three data points D = {(1,0), (1,0.6),(1, 1)} at the same input x = 1, with
a naive implementation of the B&B algorithm with growing datasets
using augmentation rule AY, . i.e., Ay, With p = 1. Assume that the
(reduced) datasets are chosen as in Table 1. Even if the lower bound
calculated based on reduced datasets D, and D, is exact, i.e., equals
the respective optimal objective, gaps would remain gCV < gg’] <gp <
gp(peumbenty Branching does not help either since we already assume
exact lower bounds. With that, neither augmenting nor convergence is
possible. []

If the convergence of the B&B algorithm with growing datasets
suffers from Ay, ., Not completing finitely, we can use the hybrid
augmentation rule Ag, (N := (Agunc(Ni) V Agorsr(Ny)). Note that
constant ¢ should be sufficiently large to not completely overrule the
scALING condition.

3. A B&B algorithm with growing datasets

Algorithm 1: B&B algorithm with growing datasets

Input: Model formulation including parameter domain P and
full dataset D

Output: Global optimal solution including bounds on optimal

objective value
Initialize counter k := 0, root node N, :=
active nodes N 1= {Ny};

Pre-processing of root node Nj;

3 P1ck initial dataset D, ¢ D and reset dataset of root node
1= (P,Dy);

4 while ub, — 1b, >optimality tolerance do

5 Select next node N, € Nj;

// Dataset of active node N,: D, C D

6 Solve lower bounding problem in N,;

7 Solve upper boundmg problem in N, and obtain point Py,

-

(P, D) and set of

N

ub

8 Evaluate model at p based on D and obtain upper bound

9 Update upper bound over all active nodes ub;;
10 if N, cannot be pruned then
11 Call Subroutine 1;

12 end

13 Update lower bound over all active nodes /b;;
14 k:=k+1;

15 end

Together with the components described in Section 2, we propose to
extend the common procedure of a B&B algorithm by growing datasets
as shown in Fig. 1. The preprocessing in the root node, e.g., bound
tightening and multistart, is still based on the full dataset, while we
start with a reduced dataset for lower bounding, compare also Algo-
rithm 1. For the upper bounding, we compute a local optimum based
on the reduced dataset and evaluate the corresponding solution point
based on the full dataset to get a valid upper bound for (PE). Whether
to augment or branch is determined based on the augmentation rules
presented in Section 2. Note that both child nodes inherit the dataset
from the parent node in branching, cf. Subroutine 1. As a first step,
we propose a very simple setup for determining and augmenting the
reduced datasets: the size of the initial dataset and the augmentation
size ¢ are user settings, namely 10% and 25% of the full dataset,
respectively, by default; the indices of the data points to be chosen are
picked randomly for both the initialization and augmentation.

The B&B algorithm with growing datasets is a deterministic global
optimization algorithm for solving Problem (PE) based on the full
dataset, since we obtain valid lower and upper bounds, see Lemma 1.
The heuristic augmentation rules are not used for pruning but only to
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decide whether to augment. In fact, we can show that extending a con-
vergent B&B algorithm by growing datasets preserves the convergence
to the global optimum of the original problem formulation (PE).

We adapt the proof of convergence for a B&B algorithm subject to
optimality and feasibility tolerances given in Theorem 5.26 of Locatelli
and Schoen (2013). In fact, the proposed B&B algorithm with growing
datasets introduces a dependency on the dataset for the lower and
upper bounds. At first, we verify the crucial assumptions of Theorem
5.26 (Locatelli & Schoen, 2013).

Lemma 3. Let Assumptions 1 and 2 hold. We apply a spatial B&B algo-
rithm with optimality tolerance € > 0 to (PE). Let the convex underestimator
gg’ be exact in the limit (Locatelli & Schoen, 2013, Def. 5.4), cf. Ap-
pendix A. Let g(-;x4,y,) satisfy the so called isotonic property for any
(x4,y4) € D (Locatelli & Schoen, 2013, Eq. (5.24)), cf. Appendix A. Let the
subdivision process of the B&B algorithm be exhaustive (Locatelli & Schoen,
2013, Def. 5.5), cf. Appendix A.

If we use the B&B algorithm with growing datasets depicted in Fig. 1 with
iteration index k, optimality tolerance ¢ > 0, and an augmentation rule A
which completes finitely, then

(i) each element of the generated sequence (gg’k)k satisfies the isotonic
property
(ii) each element of (ggk)k is a convex underestimator of gp
(iii) each element of (gg’k )i is exact in the limit regarding the full dataset

(iv) the subdivision process remains exhaustive.

Proof.

(i) With increasing iteration index k, the dataset D, can be aug-
mented or remain constant. The statement follows with any
g%(-;x4,y4) being nonnegative and satisfying the isotonic prop-
erty.

(ii) The statement follows from Lemma 1.

(iii) Without loss of generality, we focus on a sequence of nested
nodes {N, K, }j>c generated by the B&B algorithm with growing
datasets. Since the augmentation rule completes finitely, there
exits J < oo : ij =DVj>1J. Thus,gg’k_ =gy forany j > J.
The statement follows with g7J’ being exact in the limit.

(iv) If data augmentation is triggered, a child node is added which

coincides with the currently active node except for the dataset.

In particular, the parameter domain of the child node equals the

parameter domain of its parent node.

If data augmentation is not triggered, the branching process of

the original B&B algorithm is executed.

Thus, the subdivision process remains exhaustive.

O

Note that the inequality constraints h(x,, y;;-) and T are not affected
by a change of the dataset. We just add more data-dependent con-
straints h(x,, y;;-) when augmenting the dataset. Based on Lemma 3,
we can extend the proof of Theorem 5.26 (Locatelli & Schoen, 2013)
to growing datasets.

Theorem 2. Let Assumptions 1 and 2 hold. We apply a spatial
B&B algorithm with optimality tolerance ¢ > 0 to (PE). Let the convex
underestimators gg', h(x4,y4:) V(x4,y,) € D, and A% be exact in
the limit. Let g% (;x4,y4) and h®(x,,y,;-) satisfy the isotonic property
V(x4,v;) € D. Let the subdivision process of the B&B algorithm be
exhaustive.

Then the B&B algorithm with growing datasets depicted in Fig. 1 termi-
nates after a finite number of iterations and

« either establishes that the problem is infeasible if the final upper bound
equals infinity
* or returns an e-optimal solution if the final lower bound is finite.

Proof. If the algorithm terminates:
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+ Case [ infinite final upper bound
Since reducing the dataset results in a relaxation of (PE), the in-
feasibility of the model follows directly from the proof of Theorem
5.26 given in Locatelli and Schoen (2013).

» Case I finite final upper bound
Since we obtain valid lower and upper bounds even when using
a reduced dataset, see Lemma 1, the e-optimality follows directly
from the proof of Theorem 5.26 given in Locatelli and Schoen
(2013).

The finite convergence follows from the proof of Theorem 5.26 given
in Locatelli and Schoen (2013) since

+ the modified B&B algorithm generates valid upper and lower
bounds for the model based on the full dataset, see Lemma 1,

» Lemma 3 gives exactness in the limit and exhaustiveness of the
lower bounding scheme. []

Note that the B&B algorithm with growing datasets is only guaran-
teed to converge if the augmentation rule completes finitely. This is the
case, e.g., for augmentation rule A, where we reach the full dataset
with a specific size of the B&B tree, cf. proof of Proposition 1. Otherwise
overfitting or conflicting data may prevent augmenting and closing the
optimality gap as in the pathological case for augmentation rule A, .
illustrated in Example 1.

In MAINGO, only nodes with a parameter domain P, that has a
diameter of at least a user-given tolerance are added to prevent the
cluster effect (see, e.g., Du & Kearfott, 1994). In cases of overfitting
or conflicting data, MAINGO may therefore terminate since no active
nodes are left, although the optimality tolerance is not reached. Thus,
we implemented the following heuristic: we add the node containing
the best incumbent found so far with the dataset augmented to the
full dataset D. If the solution point of the original problem, i.e., with
considering the full dataset, is sufficiently close to the best incumbent
calculated based on a reduced dataset, the global solution is contained
in the added node. In that case, the B&B algorithm with growing
datasets will converge successfully. Otherwise the B&B algorithm with
growing datasets at least updates the lower bound based on the full
dataset and reports therewith tighter bounds on the optimality gap
when hitting another termination criterion like a CPU time limit.

4. Numerical results

In this section, we want to test the actual performance of our
proposed algorithm. Many real-world parameter estimation problems
minimize a summed squared error over 1000, 10000 or more mea-
surements (e.g., Alsmeyer et al.,, 2004; Kapfer et al., 2019; Lemmon
et al., 2009). Contrarily, general benchmark libraries for mathematical
programming like MINLPlib (Bussieck et al., 2003) and Princeton-
Lib (Vanderbei & colleagues, 2004) offer only limited coverage of
optimization problems in this format or only small problems. For
example, the COCONUT benchmark (Shcherbina et al., 2003) contains
a few instances with up to 35 data points. The largest instance named
“gulf” (Cox, 1969; Moré et al., 1981) containing 99 data points can
be solved within a second even without our extension. At the same
time, the second largest instance with 65 data points, see “osborneb”
or “Osborne 2” (Moré et al., 1981; Osborne, 1972), containing 11
optimization variables and redundant terms in the objective poses
a huge challenge for the local upper bounding solver which is not
tackled by our proposed algorithm. Benchmarks from medicine and
biology (e.g., Villaverde et al., 2019) typically include large datasets
but pose a huge challenge for the B&B algorithm itself due to their large
number of unknown parameters.

To test the performance of our proposed algorithm nevertheless,
we revisit the optimization problem for fitting the equation of state
(EOS) of propane (Lemmon et al., 2009; Sass et al., 2023) and a model
describing a kinetic metabolic pathway (Moles et al., 2003). When
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Table 2
Total CPU time for convergence of different estimation problems in MAINGO with a
fixed dataset as well as with growing datasets and different augmentation rules.

E0S2262 EO0S262 TSP
Full dataset 22.34h 111.1 min 217.7 min
CONST c=5 18.58h 126.8 min 38.2min
CONST c=10 13.61h 62.1 min 2.3 min
SCALING p= 4.53h 23.1 min 39.2 min
SCALING p=0.75 4.48h 24.3 min 111.9 min
SCALING p=0.5 4.70h 16.7 min 4.0 min
SCALING p=025 4.46h 22.3 min 2.0 min

Table 3

Number of nodes processed for convergence of different estimation problems by
MAINGO with a fixed dataset as well as with growing datasets and different
augmentation rules.

E0S2262 EO0S262 TSP
Full dataset 101 148 110901 636794
CONST c=5 92789 113897 101957
CONST c=10 101113 129732 7247
SCALING p=1 149002 195803 239922
SCALING p=0.75 148 808 208268 824246
SCALING p=05 153080 167751 30168
SCALING p =025 143001 200624 15955

fitted accurately, the former allows for the optimal design and oper-
ation of processes using propane, e.g., as an ecological alternative for
common fuels and refrigerants, and the latter for deeper insights into
biochemical processes. In fact, we solve the EOS model with respect
to 9 unknown parameters based on 262 and 2262 data points, calling
it EOS262 and E0S2262, respectively. For the biochemical model, we
adopt the name “TSP model” from Villaverde et al. (2019) and use
one experiment of Moles et al. (2003) with 20 measurements for each
of the 8 differential states to optimize 12 unknown parameters. Note
that we use noise-free measurement data generated with the respective
model. In particular, we do not account for the selection of data points
regarding their individual experimental uncertainties and impact on the
resulting model in this case study.

The B&B algorithm with growing datasets is available in our open-
source DGO solver MAINGO version 0.7.2. In the root node, we run 3
local searches with Ipopt version 3.12.12 (Wachter & Biegler, 2006) as
a preprocessing. For the lower bounding, MAINGO obtains relaxations
from MC++ (Chachuat et al., 2015), applies an adaptation of Kelley’s
algorithm (Kelley, 1960; Najman et al., 2021) for linearization and
invokes the linear solver CLP version 1.17.0 (Forrest et al., 2004) to
solve the resulting linear program. For the upper bounding, the local
solver LBFGS (Liu & Nocedal, 1989; Nocedal, 1980) implemented in
the NLOPT toolbox v2.5.0 (Johnson, 2007) was used. We investigate
the augmentation rules const with default setting ¢ = 10 and scaLiNGg
with different values for augmentation weight p independently rather
than using the default rule scarcst. All calculations are performed on an
Intel(R) Core(TM) i5-3570 processor with 3.4 GHz. Since the quality
of the local solutions is very sensitive to the initial solution chosen
and the number of steps performed in the local optimization of the
upper bounding problem, we limit the local optimization procedure
in both preprocessing and upper bounding by a maximum number
of iterations rather than a CPU time limit to get deterministic and
comparable results. Refer to the supplementary material for the exact
settings and data points used as well as the problem formulation in the
syntax of MAINGO and GAMS (Bussieck et al., 2003).

Table 2 summarizes the total CPU time for solving models EOS262,
E0S2262, and TSP with the full dataset, i.e., the common B&B algo-
rithm, and with growing datasets to global optimality. These results
follow our expectations based on the provided theory: As indicated by
the discussion around Theorem 1, augmentation rule scaLinG is the most
appropriate choice for quick convergence in most of the cases. In detail,
we save about 80% of the CPU time independent of the augmentation
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weight p for models E0S2262 and EOS262. For the TSP model, we can
even decrease the CPU time by a factor of 100 when choosing scaLing
with p = 1. The use of augmentation rule const is more ambiguous.
While we can decrease the runtime for the TSP model by a factor of
100 when using const with default setting ¢ = 10, the runtime for
EO0S262 increases with ¢ = 5. For EOS262 with ¢ = 5, the full dataset is
reached before MAINGO could prune parts of the B&B tree based on the
reduced dataset. In that way, growing datasets just increase the size of
the B&B tree. Note that Proposition 1 and Theorem 2 give a theoretical
guarantee for convergence when using augmentation rule const, but do
not make statements about the speed of convergence.

The time needed for convergence depends on (i) the processing
time for a node and (ii) the number of nodes needed for convergence.
The strength of the B&B algorithm with growing datasets lies in the
significant reduction of the CPU time per node. When comparing
Table 2 and 3, we can see, e.g., for EOS2262 that the B&B algorithm
processes about 150000 nodes in less than 5h when using reduced
datasets with augmentation rules scaLing while it processes only about
100000 in 22 h with the full dataset. For (ii), the tightness of the lower
and upper bounds plays a key role. The upper bound depends on the
actual local solution found. We calculate the solution point of the
upper bounding problem based on the reduced dataset, see Algorithm
1, and, in MAiINGO, the solution point of the lower bounding problem is
used for initializing the upper bounding solver. By chance, a reduced
dataset may therefore give a better solution and lead to much faster
convergence as can be seen for the TSP model with const ¢ = 10 and
scaLING p € {0.25,0.5}. Note that the lower bound remains at its natural
lower bound of 0, when using noise-free measurement data as in this
case study. When using noisy data, the tightness of the lower bound
may suffer from the data reduction, which is the downside of Lemma 1.

For all scenarios, the optimal objective value, i.e., the final upper
bound, is between the natural lower bound of 0 and the optimality
tolerance of ¢ = 0.01. In fact, MAINGO computes for the EOS model
solutions close to those of Lemmon et al. (2009) which were used
to generate the data points. Only for parameters y,, and ¢, there
are significant differences. Note that these two parameters have a
marginal impact on the model prediction, especially compared to the
other parameters ny, t;9. dyo, ¢i0» !19- 9> and p;y. For the TSP
model, all optimal parameter values determined by MAINGO differ
significantly from the nominal values of Moles et al. (2003). However,
these differences are not tracked by the objective function since they
occur between the initial date and the first measurement value at ¢t = 6,
see the different solution trajectories of state G, in Fig. 2. In other
words, the parameter estimation problem is still solved correctly based
on the given dataset. The exact parameter values for both models are
given in the supplementary material.

MAINGO can handle the reduced-space formulation well which we
used for both the EOS and the TSP model, refer to supplementary ma-
terial for more details. In particular, we solve an optimization problem
with 9 and 12 optimization variables, respectively, independent of the
size of the dataset. In contrast to that, AVM-based solvers like BARON
will typically introduce one or more optimization variables for each
data point. To get a first impression on potential CPU time savings when
extending an AVM-based B&B algorithm by growing datasets, we use
the feature for adding auxiliary variables in MAINGO (Najman et al.,
2021) for the EOS model: for each mathematical expression that occurs
at least two times in the model formulation, an auxiliary optimization
variable is added to the lower bounding problem. In case of EOS2262
49 auxiliary variables are added, while 17 auxiliary variables are added
for EOS262.

For different datasets, we measure the CPU time required for the
different steps performed in each node comprising a preprocessing step
for bound tightening, solving the lower bounding problem, solving
the upper bounding problem, and a postprocessing step for bound-
tightening. The CPU time spend for a node is mainly determined by
the preprocessing step, which includes bound tightening via constraint
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Fig. 3. Average CPU time spent by MAINGO with growing datasets in a node for preprocessing (+) and solving the lower bounding problem () without (solid lines) and with
auxiliary variables (dashed lines) when clustering the nodes by the size of their associated dataset.

propagation and optimality-based bound tightening (Gleixner et al.,
2017), and the lower bounding step. As can be seen in Fig. 3 , the
average CPU time per node for both preprocessing and solving the
lower bounding problem increases with increasing size of the dataset.
Even without auxiliary variables, an increasing size of the dataset
implies an increasing effort for evaluating data-dependent functions
and their subgradients. The addition of auxiliary variables shifts the
CPU times to larger values. In MAINGO, the number of optimization
variables within the B&B algorithm remains the same for each dataset
even when using the auxiliary variable feature. Thus, we expect both
a shift and a larger slope of the curves when adding one or more
auxiliary variables per data point. In other words, we expect AVM-
based implementations of the B&B algorithm to profit even more from
including growing datasets. Note that the seemingly small CPU time
differences add up to the significant time savings observed in Table 2
since the B&B algorithm often requires the processing of multiple
thousands of nodes for convergence, e.g., more than 100000 nodes in
case of E0S262 and E0S2262 when using the fixed full dataset.

5. Conclusions

We propose a B&B algorithm with growing datasets for solving
parameter estimation problems subject to large measurement datasets.
In fact, we start with a significantly reduced dataset which is aug-
mented automatically within the B&B procedure until the full dataset
is reached. We have proven for NLPs that this extension preserves the
convergence of the underlying B&B algorithm to a global optimum of
the original problem based on the full dataset.

For augmenting, we presented the intuitive decision rule consr as
well as the more sophisticated rule scauing. We have shown that the
latter augments most likely if we could have pruned the currently
processed node based on the full dataset. This is accompanied by a
numerical case study based on the equation of state of propane (Lem-
mon et al., 2009) and a model for metabolic pathways (Moles et al.,
2003; Villaverde et al., 2019) with noise-free synthetic measurement
data. The total CPU time for DGO can be reduced by about 80% when
using the augmentation rule scauing for the former, and by a factor of
100 with specific settings for augmentation rules const and scaLiNG for
the latter.
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In our case study, we consider simulated noise-free data allowing
for a perfect fit. In particular, the lower bound equals 0 except for
numerical tolerances independent of the dataset used. For any datasets
that cannot be fitted perfectly, e.g., due to measurement errors, un-
certainties or a wrong model structure, there may be a significant
gap between the objective of the estimation problem based on the
reduced dataset and the one based on the full dataset. This may prevent
pruning based on the reduced dataset and even augmenting according
to the rule scauing. Although we can enforce augmenting by using the
augmentation rules const or scALcsT, we cannot enforce pruning. In the
worst case, the B&B tree will only grow as long as reduced datasets
are used. In this case, we cannot expect any CPU time savings by using
growing datasets. Hence, we will study a heuristic B&B algorithm with
growing datasets in future, which will use an approximation of the full
lower bound based on the reduced lower bound for pruning rather than
only for augmenting.

In future, the choice of the datasets needs to be revisited as well. On
the one hand, heuristic knowledge for choosing the size and data points
of training sets can be transferred from machine learning to the choice
of the initial datasets in our approach. On the other hand, the number
of data points to be added in an augmentation set, what we called
augmentation size, may be dynamically adapted within the B&B algo-
rithm with growing datasets: e.g., we could start with small sets and
decide based on the lower bounds before and after augmenting whether
to increase the augmentation size. Additionally, heuristic knowledge
about the sensitivity of the solution to specific (subsets of) data points
from stochastic optimization or machine learning may improve the
efficiency of the proposed augmentation step. Similarly, model-specific
knowledge about the uncertainty of specific (subsets of) data points or
intrinsic clusters of the data points, e.g., data points representing liquid
and gas phase in thermodynamic models, may be used.

Finally, we want to emphasize the need to extend open benchmark
libraries by parameter estimation problems. While general benchmark
libraries for mathematical programming have limited coverage of this
class of optimization problems or do only account for small datasets,
benchmark libraries with medical and biological parameter estimation
problems often contain only large dynamic optimization problems with
about 30, 100, or more unknown parameters which cannot be handled
by DGO solvers, yet. Larger benchmark models gain importance in
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future when the combination of tailored algorithms, e.g., for large-
scale parameter estimation as the approach proposed herein or for
DGO of dynamic optimization problems (e.g., Esposito & Floudas, 2000;
Papamichail & Adjiman, 2002; Singer & Barton, 2006), together with
the emerging parallelization of optimization software may significantly
extend the capabilities of DGO solvers.
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Appendix A. Basic definitions used in the proof of convergence

In this section, we repeat the definitions of Locatelli and Schoen
(2013) with our notation, see Section 3. For this, we denote the feasible
set of the node N, = (P, D,) with associated parameter domain
P, ¢ R" and dataset D, ¢ R™ x R processed in B&B iteration k by
Fi :=Pn{pEP: h(xsys:p) <0 V(x4 7,) €D A h(p) <0}, where
h(x,,y,;) and ' are the residuals of inequality constraints.

Definition 2 (Equation (5.24) of Locatelli & Schoen, 2013).
An underestimator F¢ : P — R satisfies the isotonic property if
FICF = FYOlper, 2 FYD)lper, YPEF; -

Definition 3 (Definition 5.4 of Locatelli & Schoen, 2013). A convex
underestimator F< : P — R of a function F over some region F
is exact in the limit if maxperk{F(p) — FY(p)} < n(diam(F,)) , where
diam(F,) = maxp, . e IP1 = Pall; is the diameter of 7, and 5(r) is a
continuous nondecreasing function such that lim,_,#7(r) =0 .

Definition 4 (Definition 5.5 of Locatelli & Schoen, 2013). A B&B al-
gorithm equipped with a geometric branching rule possesses the ex-
haustiveness property if each infinite nested sequence generated by the
algorithm Fi); Fio = Foo kj < kjpis Fy € Fi, Vi = 0.1,
converges to a singleton diam(f’kj) —0asj—> .
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Appendix B. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.ejor.2024.02.020.
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