001     1025678
005     20240712112900.0
024 7 _ |a 10.48550/ARXIV.2401.16188
|2 doi
024 7 _ |a 10.34734/FZJ-2024-03067
|2 datacite_doi
037 _ _ |a FZJ-2024-03067
100 1 _ |a Ziegler, Anita L.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Simultaneous design of fermentation and microbe
260 _ _ |c 2024
|b arXiv
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1714576571_3667
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a Constraint-based optimization of microbial strains and model-based bioprocess design have been used extensively to enhance yields in biotechnological processes. However, strain and process optimization are usually carried out in sequential steps, causing underperformance of the biotechnological process when scaling up to industrial fermentation conditions. Herein, we propose the optimization formulation SimulKnock that combines the optimization of a fermentation process with metabolic network design in a bilevel optimization program. The upper level maximizes space-time yield and includes mass balances of a continuous fermentation, while the lower level is based on flux balance analysis. SimulKnock predicts optimal gene deletions and finds the optimal trade-off between growth rate and product yield. Results of a case study with a genome-scale metabolic model of E. coli indicate higher space-time yields than a sequential approach using OptKnock for almost all target products considered. By leveraging SimulKnock, we reduce the gap between strain and process optimization.
536 _ _ |a 899 - ohne Topic (POF4-899)
|0 G:(DE-HGF)POF4-899
|c POF4-899
|f POF IV
|x 0
588 _ _ |a Dataset connected to DataCite
650 _ 7 |a Optimization and Control (math.OC)
|2 Other
650 _ 7 |a FOS: Mathematics
|2 Other
700 1 _ |a Manchanda, Ashutosh
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Stumm, Marc-Daniel
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Blank, Lars M.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Mitsos, Alexander
|0 P:(DE-Juel1)172025
|b 4
|e Corresponding author
|u fzj
773 _ _ |a 10.48550/ARXIV.2401.16188
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1025678/files/2401.16188v1.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1025678/files/2401.16188v1.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1025678/files/2401.16188v1.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1025678/files/2401.16188v1.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1025678/files/2401.16188v1.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1025678
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 2
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)172025
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 4
|6 P:(DE-Juel1)172025
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2024
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-10-20170217
|k IEK-10
|l Modellierung von Energiesystemen
|x 0
980 1 _ |a FullTexts
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-10-20170217
981 _ _ |a I:(DE-Juel1)ICE-1-20170217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21