PHD DAYS PRESENTATION

Probing the crystal and magnetic structure evolution from Perovskite to Brownmillerite In $La_{0.7}Sr_{0.3}MnO_{3-\delta}$

15.02.2024 JCNS-2 FORSCHUNGSZENTRUM JÜLICH

<u>Chenyang Yin</u>, Lei Cao, Suqin He, Felix Gunkel, Denis Sheptyakov, Emmanuel Kentzinger, Sabine Pütter, Mai Hussein, Yifan Xu, Shibabrata Nandi, Asmaa Qdemat, Maria Teresa Fernandez-Diaz, Oleg Petracic

OUTLINE

1. Introduction, motivation and project focus

- 2. Probing the crystal and magnetic structure evolution from PV to BM at the micro-, meso- and macroscopic length scale
- 3. Conclusions and outlook

Various applications of complex oxides

Hemberger, J., et al., Physical Review B, 2002.66(9): p.1-8

Metal

2θ (deg)

- Peak at 16K and at 42K indicates spin glass state and superparamagnetic state. (need AC-susceptibility)
- Exchange bias of 303Oe of at 5K implies the interaction between different magnetic states. e.g. between FM cluster and AFM cluster.

LSMO powder, INTER. 2 (more V_{0}), neutron powder diffraction at PSI, HRPT

LSMO powder, INTER. 2 (more V₀), Vibrating Sample Magnetometer(PPMS-VSM)

- ♦ 3 Peaks at 16K and at 48K and 130K.
- Peaks due to AFM at different T? (need neutron thermodiffraction) Or due to AFM+SP+SG? (need AC-susceptibility)
- ♦ Exchange bias of 613Oe of at 5K. ➡ Strong interaction.

Experimental methods for probing mesoscopic information

1. Scattering method: GISAXS. SAXS. GISANS. SANS. PNR

2.Imaging method: PEEM, STXM, STEM

Done by Lei Cao

Member of the Helmholtz Association

Page 12

O

Magnetic interaction

Percolation theory!

Percolation simulation via Monte Carlo method

breakdown

Plan:

Stage 1: Simple percolation using a 2D matrix (later 3D matrix). Curren

Stage 2: Mn oxidation state change induced by oxygen vacancy and the breakdown of double exchange.

Stage 3: Oxygen diffusion.

Ferromagnetic

Antiferromagnetic

3. CONCLUSIONS AND OUTLOOK

Conclusions

The evolution of the crystal and magnetic structure of LSMO powder from PV to BM has been probed in micro- and macroscopic length scales. The results indicate a potential crystal and magnetic clustering process in mesoscopic length scale.

Outlook

Mesoscopic: the crystal and magnetic clustering process will be continued on the LSMO powder via SAXS SANS and on the thin film using PEEM, STXM, STEM, GISAXS, GISANS, PNR + percolation simulation.

THANKS FOR YOUR ATTENTION!

Acknowledgment:

PD. Dr. Oleg Petracic, Prof. Dr. Thomas Brückel Dr. Lei Cao, Dr. Emmanuel Kentzinger, Dr. Asmaa Qdemat, Dr. Sabine Pütter, Yifan Xu, Yishui Zhou, Vitor Alexandre de Oliveira Lima, Dr. Connie Bednarski-Meinke, Dr. Shibabrata Nandi, Dr. Ji Qi, Dr. Mai Hussein, Jörg Persson, Berthold Schmitz, Frank Gossen

Dr. Felix Gunkel, Suqin He, Anton Klaus, Prof. Dr. Christian Pithan, Lisa Heymann

Maria Teresa Fernandez-Diaz, Dr. Emmanuelle Suard

Denis Sheptyakov

