001025703 001__ 1025703
001025703 005__ 20250204113846.0
001025703 0247_ $$2doi$$a10.1021/acs.nanolett.3c05129
001025703 0247_ $$2ISSN$$a1530-6984
001025703 0247_ $$2ISSN$$a1530-6992
001025703 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-03086
001025703 0247_ $$2pmid$$a38619844
001025703 0247_ $$2WOS$$aWOS:001203953300001
001025703 037__ $$aFZJ-2024-03086
001025703 082__ $$a660
001025703 1001_ $$0P:(DE-HGF)0$$aChen, Zhiqi$$b0
001025703 245__ $$aTopology-Engineered Orbital Hall Effect in Two-Dimensional Ferromagnets
001025703 260__ $$aWashington, DC$$bACS Publ.$$c2024
001025703 3367_ $$2DRIVER$$aarticle
001025703 3367_ $$2DataCite$$aOutput Types/Journal article
001025703 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1714729284_26324
001025703 3367_ $$2BibTeX$$aARTICLE
001025703 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001025703 3367_ $$00$$2EndNote$$aJournal Article
001025703 520__ $$aRecent advances in the manipulation of the orbital angular momentum (OAM) within the paradigm of orbitronics presents a promising avenue for the design of future electronic devices. In this context, the recently observed orbital Hall effect (OHE) occupies a special place. Here, focusing on both the second-order topological and quantum anomalous Hall insulators in two-dimensional ferromagnets, we demonstrate that topological phase transitions present an efficient and straightforward way to engineer the OHE, where the OAM distribution can be controlled by the nature of the band inversion. Using first-principles calculations, we identify Janus RuBrCl and three septuple layers of MnBi2Te4 as experimentally feasible examples of the proposed mechanism of OHE engineering by topology. With our work, we open up new possibilities for innovative applications in topological spintronics and orbitronics.
001025703 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001025703 536__ $$0G:(GEPRIS)444844585$$aDFG project 444844585 - Statische und dynamische Kopplung von Gitter- und elektronischen Freiheitsgraden in magnetisch geordneten Übergangsmetalldichalkogenieden (B06) (444844585)$$c444844585$$x1
001025703 536__ $$0G:(GEPRIS)448880005$$aDFG project 448880005 - Ab-Initio Entdeckung topologischer magnetischer Hochtemperaturmaterialien (448880005)$$c448880005$$x2
001025703 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001025703 7001_ $$0P:(DE-HGF)0$$aLi, Runhan$$b1
001025703 7001_ $$0P:(DE-HGF)0$$aBai, Yingxi$$b2
001025703 7001_ $$0P:(DE-HGF)0$$aMao, Ning$$b3
001025703 7001_ $$0P:(DE-Juel1)186814$$aZeer, Mahmoud$$b4$$ufzj
001025703 7001_ $$0P:(DE-Juel1)178993$$aGo, Dongwook$$b5$$ufzj
001025703 7001_ $$0P:(DE-HGF)0$$aDai, Ying$$b6$$eCorresponding author
001025703 7001_ $$0P:(DE-HGF)0$$aHuang, Baibiao$$b7
001025703 7001_ $$0P:(DE-Juel1)130848$$aMokrousov, Yuriy$$b8$$ufzj
001025703 7001_ $$0P:(DE-HGF)0$$aNiu, Chengwang$$b9$$eCorresponding author
001025703 773__ $$0PERI:(DE-600)2048866-X$$a10.1021/acs.nanolett.3c05129$$gp. acs.nanolett.3c05129$$n16$$p4826–4833$$tNano letters$$v24$$x1530-6984$$y2024
001025703 8564_ $$uhttps://juser.fz-juelich.de/record/1025703/files/2404.07820v1.pdf$$yOpenAccess
001025703 8564_ $$uhttps://juser.fz-juelich.de/record/1025703/files/2404.07820v1.gif?subformat=icon$$xicon$$yOpenAccess
001025703 8564_ $$uhttps://juser.fz-juelich.de/record/1025703/files/2404.07820v1.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001025703 8564_ $$uhttps://juser.fz-juelich.de/record/1025703/files/2404.07820v1.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001025703 8564_ $$uhttps://juser.fz-juelich.de/record/1025703/files/2404.07820v1.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001025703 909CO $$ooai:juser.fz-juelich.de:1025703$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001025703 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China$$b0
001025703 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China$$b1
001025703 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China$$b2
001025703 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China$$b3
001025703 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186814$$aForschungszentrum Jülich$$b4$$kFZJ
001025703 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178993$$aForschungszentrum Jülich$$b5$$kFZJ
001025703 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China$$b6
001025703 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China$$b7
001025703 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130848$$aForschungszentrum Jülich$$b8$$kFZJ
001025703 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China$$b9
001025703 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001025703 9141_ $$y2024
001025703 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-24
001025703 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001025703 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-24
001025703 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANO LETT : 2022$$d2024-12-18
001025703 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-18
001025703 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-18
001025703 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-18
001025703 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-18
001025703 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-18
001025703 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-18
001025703 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-18
001025703 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNANO LETT : 2022$$d2024-12-18
001025703 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
001025703 980__ $$ajournal
001025703 980__ $$aVDB
001025703 980__ $$aUNRESTRICTED
001025703 980__ $$aI:(DE-Juel1)PGI-1-20110106
001025703 9801_ $$aFullTexts