Hauptseite > Publikationsdatenbank > Topology-Engineered Orbital Hall Effect in Two-Dimensional Ferromagnets > print |
001 | 1025703 | ||
005 | 20250204113846.0 | ||
024 | 7 | _ | |a 10.1021/acs.nanolett.3c05129 |2 doi |
024 | 7 | _ | |a 1530-6984 |2 ISSN |
024 | 7 | _ | |a 1530-6992 |2 ISSN |
024 | 7 | _ | |a 10.34734/FZJ-2024-03086 |2 datacite_doi |
024 | 7 | _ | |a 38619844 |2 pmid |
024 | 7 | _ | |a WOS:001203953300001 |2 WOS |
037 | _ | _ | |a FZJ-2024-03086 |
082 | _ | _ | |a 660 |
100 | 1 | _ | |a Chen, Zhiqi |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Topology-Engineered Orbital Hall Effect in Two-Dimensional Ferromagnets |
260 | _ | _ | |a Washington, DC |c 2024 |b ACS Publ. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1714729284_26324 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Recent advances in the manipulation of the orbital angular momentum (OAM) within the paradigm of orbitronics presents a promising avenue for the design of future electronic devices. In this context, the recently observed orbital Hall effect (OHE) occupies a special place. Here, focusing on both the second-order topological and quantum anomalous Hall insulators in two-dimensional ferromagnets, we demonstrate that topological phase transitions present an efficient and straightforward way to engineer the OHE, where the OAM distribution can be controlled by the nature of the band inversion. Using first-principles calculations, we identify Janus RuBrCl and three septuple layers of MnBi2Te4 as experimentally feasible examples of the proposed mechanism of OHE engineering by topology. With our work, we open up new possibilities for innovative applications in topological spintronics and orbitronics. |
536 | _ | _ | |a 5211 - Topological Matter (POF4-521) |0 G:(DE-HGF)POF4-5211 |c POF4-521 |f POF IV |x 0 |
536 | _ | _ | |a DFG project 444844585 - Statische und dynamische Kopplung von Gitter- und elektronischen Freiheitsgraden in magnetisch geordneten Übergangsmetalldichalkogenieden (B06) (444844585) |0 G:(GEPRIS)444844585 |c 444844585 |x 1 |
536 | _ | _ | |a DFG project 448880005 - Ab-Initio Entdeckung topologischer magnetischer Hochtemperaturmaterialien (448880005) |0 G:(GEPRIS)448880005 |c 448880005 |x 2 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Li, Runhan |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Bai, Yingxi |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Mao, Ning |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Zeer, Mahmoud |0 P:(DE-Juel1)186814 |b 4 |u fzj |
700 | 1 | _ | |a Go, Dongwook |0 P:(DE-Juel1)178993 |b 5 |u fzj |
700 | 1 | _ | |a Dai, Ying |0 P:(DE-HGF)0 |b 6 |e Corresponding author |
700 | 1 | _ | |a Huang, Baibiao |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Mokrousov, Yuriy |0 P:(DE-Juel1)130848 |b 8 |u fzj |
700 | 1 | _ | |a Niu, Chengwang |0 P:(DE-HGF)0 |b 9 |e Corresponding author |
773 | _ | _ | |a 10.1021/acs.nanolett.3c05129 |g p. acs.nanolett.3c05129 |0 PERI:(DE-600)2048866-X |n 16 |p 4826–4833 |t Nano letters |v 24 |y 2024 |x 1530-6984 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1025703/files/2404.07820v1.pdf |
856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/1025703/files/2404.07820v1.gif?subformat=icon |
856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/1025703/files/2404.07820v1.jpg?subformat=icon-1440 |
856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/1025703/files/2404.07820v1.jpg?subformat=icon-180 |
856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/1025703/files/2404.07820v1.jpg?subformat=icon-640 |
909 | C | O | |o oai:juser.fz-juelich.de:1025703 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China |0 I:(DE-HGF)0 |b 0 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China |0 I:(DE-HGF)0 |b 1 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China |0 I:(DE-HGF)0 |b 2 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China |0 I:(DE-HGF)0 |b 3 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)186814 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)178993 |
910 | 1 | _ | |a School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China |0 I:(DE-HGF)0 |b 6 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China |0 I:(DE-HGF)0 |b 7 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)130848 |
910 | 1 | _ | |a School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China |0 I:(DE-HGF)0 |b 9 |6 P:(DE-HGF)0 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-521 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Quantum Materials |9 G:(DE-HGF)POF4-5211 |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-24 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-24 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NANO LETT : 2022 |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-18 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-18 |
915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b NANO LETT : 2022 |d 2024-12-18 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-1-20110106 |k PGI-1 |l Quanten-Theorie der Materialien |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)PGI-1-20110106 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|