001025706 001__ 1025706
001025706 005__ 20250204113846.0
001025706 0247_ $$2doi$$a10.1103/PhysRevB.109.125108
001025706 0247_ $$2ISSN$$a2469-9950
001025706 0247_ $$2ISSN$$a2469-9977
001025706 0247_ $$2ISSN$$a0163-1829
001025706 0247_ $$2ISSN$$a0556-2805
001025706 0247_ $$2ISSN$$a1095-3795
001025706 0247_ $$2ISSN$$a1098-0121
001025706 0247_ $$2ISSN$$a1538-4489
001025706 0247_ $$2ISSN$$a1550-235X
001025706 0247_ $$2ISSN$$a2469-9969
001025706 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-03089
001025706 0247_ $$2WOS$$aWOS:001235184300003
001025706 037__ $$aFZJ-2024-03089
001025706 082__ $$a530
001025706 1001_ $$0P:(DE-HGF)0$$aRamezani, H. R$$b0
001025706 245__ $$aNonconventional screening of Coulomb interaction in two-dimensional semiconductors and metals: A comprehensive constrained random phase approximation study of M X 2 ( M = Mo ,   W ,   Nb ,   Ta ;   X = S ,   Se ,   Te )
001025706 260__ $$aWoodbury, NY$$bInst.$$c2024
001025706 3367_ $$2DRIVER$$aarticle
001025706 3367_ $$2DataCite$$aOutput Types/Journal article
001025706 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1714712040_30347
001025706 3367_ $$2BibTeX$$aARTICLE
001025706 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001025706 3367_ $$00$$2EndNote$$aJournal Article
001025706 520__ $$aTwo-dimensional (2D) semiconducting and metallic transition metal dichalcogenides (TMDs) have attracted significant attention for their promising applications in a variety of fields. Experimental observations of large exciton binding energies and nonhydrogenic Rydberg series in 2D semiconducting TMDs, along with deviations in plasmon dispersion in 2D metallic TMDs, suggest the presence of a nonconventional screening of the Coulomb interaction. The experimentally observed Mott insulating state in the charge density wave (CDW) reconstructed lattice of TMDs containing 4d and 5d elements further confirms the presence of strong Coulomb interactions in these systems. In this study, we use first-principles electronic structure calculations and constrained random-phase approximation to calculate the Coulomb interaction parameters (partially screened U and fully screened W) between localized d electrons in 2D TMDs. We specifically explore materials represented by the formula MX2 (M=Nb, Ta, Mo, W; X=S, Se, Te) and consider three different phases (1H, 1T, and 1T′). Our results show that the short-range interactions are strongly screened in all three phases, whereas the long-range interactions remain significant even in metallic systems. This nonconventional screening provides a compelling explanation for the deviations observed in the usual hydrogenic Rydberg series and conventional plasmon dispersion in 2D semiconducting and metallic TMDs, respectively. Our calculations yield on-site Coulomb interaction parameters U within the ranges of 0.8–2.5, 0.8–1.9, and 0.9–2.4 eV for the 1H, 1T, and 1T′ structures, respectively. These values depend on the specific chalcogen X, the number of d electrons, and the correlated subspace. Using the calculated U parameters for the undistorted 1T structure, we extract the on-site effective Ueff00 and nearest-neighbor Ueff01 Coulomb interaction parameters for reconstructed commensurate CDW NbX2 and TaX2 compounds. Furthermore, our findings indicate a substantially high ratio of on-site effective Coulomb interaction to bandwidth (Ueff00/Wb≫1) in CDW TMDs, providing robust evidence for the experimentally observed strongly correlated Mott phase. This work sheds light on the nonconventional screening of Coulomb interactions in 2D TMDs, offering valuable insights into their electronic properties and potential applications in emerging technologies. It advances our fundamental understanding of these materials and holds promise for their use in various applications.
001025706 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001025706 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001025706 7001_ $$0P:(DE-HGF)0$$aŞaşıoğlu, E.$$b1$$eCorresponding author
001025706 7001_ $$0P:(DE-HGF)0$$aHadipour, H.$$b2
001025706 7001_ $$0P:(DE-HGF)0$$aSoleimani, H. Rahimpour$$b3
001025706 7001_ $$0P:(DE-Juel1)130644$$aFriedrich, Christoph$$b4$$ufzj
001025706 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b5$$ufzj
001025706 7001_ $$0P:(DE-HGF)0$$aMertig, I.$$b6
001025706 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.109.125108$$gVol. 109, no. 12, p. 125108$$n12$$p125108$$tPhysical review / B$$v109$$x2469-9950$$y2024
001025706 8564_ $$uhttps://juser.fz-juelich.de/record/1025706/files/PhysRevB.109.125108.pdf$$yOpenAccess
001025706 8564_ $$uhttps://juser.fz-juelich.de/record/1025706/files/PhysRevB.109.125108.gif?subformat=icon$$xicon$$yOpenAccess
001025706 8564_ $$uhttps://juser.fz-juelich.de/record/1025706/files/PhysRevB.109.125108.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001025706 8564_ $$uhttps://juser.fz-juelich.de/record/1025706/files/PhysRevB.109.125108.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001025706 8564_ $$uhttps://juser.fz-juelich.de/record/1025706/files/PhysRevB.109.125108.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001025706 909CO $$ooai:juser.fz-juelich.de:1025706$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001025706 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Physics, University of Guilan, 41335-1914 Rasht, Iran$$b0
001025706 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Institute of Physics, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany$$b1
001025706 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Physics, University of Guilan, 41335-1914 Rasht, Iran$$b2
001025706 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Physics, University of Guilan, 41335-1914 Rasht, Iran$$b3
001025706 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130644$$aForschungszentrum Jülich$$b4$$kFZJ
001025706 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b5$$kFZJ
001025706 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Institute of Physics, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany$$b6
001025706 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001025706 9141_ $$y2024
001025706 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-27
001025706 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2023-10-27
001025706 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
001025706 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-27
001025706 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001025706 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-10
001025706 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-10
001025706 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-10
001025706 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-10
001025706 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-10
001025706 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-10
001025706 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-10
001025706 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2022$$d2024-12-10
001025706 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-10
001025706 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
001025706 980__ $$ajournal
001025706 980__ $$aVDB
001025706 980__ $$aUNRESTRICTED
001025706 980__ $$aI:(DE-Juel1)PGI-1-20110106
001025706 9801_ $$aFullTexts