001     1025706
005     20250204113846.0
024 7 _ |a 10.1103/PhysRevB.109.125108
|2 doi
024 7 _ |a 2469-9950
|2 ISSN
024 7 _ |a 2469-9977
|2 ISSN
024 7 _ |a 0163-1829
|2 ISSN
024 7 _ |a 0556-2805
|2 ISSN
024 7 _ |a 1095-3795
|2 ISSN
024 7 _ |a 1098-0121
|2 ISSN
024 7 _ |a 1538-4489
|2 ISSN
024 7 _ |a 1550-235X
|2 ISSN
024 7 _ |a 2469-9969
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-03089
|2 datacite_doi
024 7 _ |a WOS:001235184300003
|2 WOS
037 _ _ |a FZJ-2024-03089
082 _ _ |a 530
100 1 _ |a Ramezani, H. R
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Nonconventional screening of Coulomb interaction in two-dimensional semiconductors and metals: A comprehensive constrained random phase approximation study of M X 2 ( M = Mo ,   W ,   Nb ,   Ta ;   X = S ,   Se ,   Te )
260 _ _ |a Woodbury, NY
|c 2024
|b Inst.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1714712040_30347
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Two-dimensional (2D) semiconducting and metallic transition metal dichalcogenides (TMDs) have attracted significant attention for their promising applications in a variety of fields. Experimental observations of large exciton binding energies and nonhydrogenic Rydberg series in 2D semiconducting TMDs, along with deviations in plasmon dispersion in 2D metallic TMDs, suggest the presence of a nonconventional screening of the Coulomb interaction. The experimentally observed Mott insulating state in the charge density wave (CDW) reconstructed lattice of TMDs containing 4d and 5d elements further confirms the presence of strong Coulomb interactions in these systems. In this study, we use first-principles electronic structure calculations and constrained random-phase approximation to calculate the Coulomb interaction parameters (partially screened U and fully screened W) between localized d electrons in 2D TMDs. We specifically explore materials represented by the formula MX2 (M=Nb, Ta, Mo, W; X=S, Se, Te) and consider three different phases (1H, 1T, and 1T′). Our results show that the short-range interactions are strongly screened in all three phases, whereas the long-range interactions remain significant even in metallic systems. This nonconventional screening provides a compelling explanation for the deviations observed in the usual hydrogenic Rydberg series and conventional plasmon dispersion in 2D semiconducting and metallic TMDs, respectively. Our calculations yield on-site Coulomb interaction parameters U within the ranges of 0.8–2.5, 0.8–1.9, and 0.9–2.4 eV for the 1H, 1T, and 1T′ structures, respectively. These values depend on the specific chalcogen X, the number of d electrons, and the correlated subspace. Using the calculated U parameters for the undistorted 1T structure, we extract the on-site effective Ueff00 and nearest-neighbor Ueff01 Coulomb interaction parameters for reconstructed commensurate CDW NbX2 and TaX2 compounds. Furthermore, our findings indicate a substantially high ratio of on-site effective Coulomb interaction to bandwidth (Ueff00/Wb≫1) in CDW TMDs, providing robust evidence for the experimentally observed strongly correlated Mott phase. This work sheds light on the nonconventional screening of Coulomb interactions in 2D TMDs, offering valuable insights into their electronic properties and potential applications in emerging technologies. It advances our fundamental understanding of these materials and holds promise for their use in various applications.
536 _ _ |a 5211 - Topological Matter (POF4-521)
|0 G:(DE-HGF)POF4-5211
|c POF4-521
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Şaşıoğlu, E.
|0 P:(DE-HGF)0
|b 1
|e Corresponding author
700 1 _ |a Hadipour, H.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Soleimani, H. Rahimpour
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Friedrich, Christoph
|0 P:(DE-Juel1)130644
|b 4
|u fzj
700 1 _ |a Blügel, Stefan
|0 P:(DE-Juel1)130548
|b 5
|u fzj
700 1 _ |a Mertig, I.
|0 P:(DE-HGF)0
|b 6
773 _ _ |a 10.1103/PhysRevB.109.125108
|g Vol. 109, no. 12, p. 125108
|0 PERI:(DE-600)2844160-6
|n 12
|p 125108
|t Physical review / B
|v 109
|y 2024
|x 2469-9950
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1025706/files/PhysRevB.109.125108.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1025706/files/PhysRevB.109.125108.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1025706/files/PhysRevB.109.125108.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1025706/files/PhysRevB.109.125108.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1025706/files/PhysRevB.109.125108.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1025706
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Department of Physics, University of Guilan, 41335-1914 Rasht, Iran
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Institute of Physics, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Department of Physics, University of Guilan, 41335-1914 Rasht, Iran
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Department of Physics, University of Guilan, 41335-1914 Rasht, Iran
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130644
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130548
910 1 _ |a Institute of Physics, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
|0 I:(DE-HGF)0
|b 6
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5211
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2023-10-27
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-10
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-10
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV B : 2022
|d 2024-12-10
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-10
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21