001025709 001__ 1025709
001025709 005__ 20250203103459.0
001025709 0247_ $$2doi$$a10.1039/D2DD00094F
001025709 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-03092
001025709 0247_ $$2WOS$$aWOS:001101461800001
001025709 037__ $$aFZJ-2024-03092
001025709 082__ $$a004
001025709 1001_ $$0P:(DE-HGF)0$$aGhosh, Kumar J. B.$$b0$$eCorresponding author
001025709 245__ $$aClassical and quantum machine learning applications in spintronics
001025709 260__ $$aWashington DC$$bRoyal Society of Chemistry$$c2023
001025709 3367_ $$2DRIVER$$aarticle
001025709 3367_ $$2DataCite$$aOutput Types/Journal article
001025709 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1713850670_7890
001025709 3367_ $$2BibTeX$$aARTICLE
001025709 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001025709 3367_ $$00$$2EndNote$$aJournal Article
001025709 520__ $$aIn this article we demonstrate the applications of classical and quantum machine learning in quantum transport and spintronics. With the help of a two-terminal device with magnetic impurities we show how machine learning algorithms can predict the highly non-linear nature of conductance as well as the non-equilibrium spin response function for any random magnetic configuration. By mapping this quantum mechanical problem onto a classification problem, we are able to obtain much higher accuracy beyond the linear response regime compared to the prediction obtained with conventional regression methods. We finally describe the applicability of quantum machine learning which has the capability to handle a significantly large configuration space. Our approach is applicable for solid state devices as well as for molecular systems. These outcomes are crucial in predicting the behavior of large-scale systems where a quantum mechanical calculation is computationally challenging and therefore would play a crucial role in designing nanodevices.
001025709 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001025709 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001025709 7001_ $$0P:(DE-Juel1)180392$$aGhosh, Sumit$$b1$$eCorresponding author
001025709 773__ $$0PERI:(DE-600)3142965-8$$a10.1039/D2DD00094F$$gVol. 2, no. 2, p. 512 - 519$$n2$$p512 - 519$$tDigital discovery$$v2$$x2635-098X$$y2023
001025709 8564_ $$uhttps://juser.fz-juelich.de/record/1025709/files/d2dd00094f.pdf$$yOpenAccess
001025709 8564_ $$uhttps://juser.fz-juelich.de/record/1025709/files/d2dd00094f.gif?subformat=icon$$xicon$$yOpenAccess
001025709 8564_ $$uhttps://juser.fz-juelich.de/record/1025709/files/d2dd00094f.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001025709 8564_ $$uhttps://juser.fz-juelich.de/record/1025709/files/d2dd00094f.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001025709 8564_ $$uhttps://juser.fz-juelich.de/record/1025709/files/d2dd00094f.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001025709 909CO $$ooai:juser.fz-juelich.de:1025709$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001025709 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a E.ON Digital Technology GmbH, Essen, Germany$$b0
001025709 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180392$$aForschungszentrum Jülich$$b1$$kFZJ
001025709 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)180392$$a Institute of Physics, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany $$b1
001025709 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001025709 9141_ $$y2024
001025709 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
001025709 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-06-22T13:37:40Z
001025709 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-06-22T13:37:40Z
001025709 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001025709 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2022-06-22T13:37:40Z
001025709 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-30
001025709 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
001025709 980__ $$ajournal
001025709 980__ $$aVDB
001025709 980__ $$aUNRESTRICTED
001025709 980__ $$aI:(DE-Juel1)PGI-1-20110106
001025709 9801_ $$aFullTexts