001025711 001__ 1025711
001025711 005__ 20250203103303.0
001025711 0247_ $$2doi$$a10.1103/PhysRevB.108.165408
001025711 0247_ $$2ISSN$$a2469-9950
001025711 0247_ $$2ISSN$$a2469-9977
001025711 0247_ $$2ISSN$$a0163-1829
001025711 0247_ $$2ISSN$$a0556-2805
001025711 0247_ $$2ISSN$$a1095-3795
001025711 0247_ $$2ISSN$$a1098-0121
001025711 0247_ $$2ISSN$$a1538-4489
001025711 0247_ $$2ISSN$$a1550-235X
001025711 0247_ $$2ISSN$$a2469-9969
001025711 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-03094
001025711 037__ $$aFZJ-2024-03094
001025711 082__ $$a530
001025711 1001_ $$0P:(DE-HGF)0$$aGhosh, Kumar J. B.$$b0$$eCorresponding author
001025711 245__ $$aExploring exotic configurations with anomalous features with deep learning: Application of classical and quantum-classical hybrid anomaly detection
001025711 260__ $$aWoodbury, NY$$bInst.$$c2023
001025711 3367_ $$2DRIVER$$aarticle
001025711 3367_ $$2DataCite$$aOutput Types/Journal article
001025711 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1714718434_31336
001025711 3367_ $$2BibTeX$$aARTICLE
001025711 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001025711 3367_ $$00$$2EndNote$$aJournal Article
001025711 520__ $$aWe present the application of classical and quantum-classical hybrid anomaly detection schemes to explore exotic configurations with anomalous features. We consider the Anderson model as a prototype, where we define two types of anomalies—a high conductance in the presence of strong impurity and a low conductance in the presence of weak impurity—as a function of random impurity distribution. Such anomalous outcome constitutes an imperceptible fraction of the data set and is not a part of the training process. These exotic configurations, which can be a source of rich new physics, usually remain elusive to conventional classification or regression methods and can be tracked only with a suitable anomaly detection scheme. We also present a systematic study of the performance of the classical and the quantum-classical hybrid anomaly detection method and show that the inclusion of a quantum circuit significantly enhances the performance of anomaly detection, which we quantify with suitable performance metrics. Our approach is quite generic in nature and can be used for any system that relies on a large number of parameters to find their new configurations, which can hold exotic new features.
001025711 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001025711 536__ $$0G:(GEPRIS)268565370$$aDFG project 268565370 - TRR 173: Spin+X: Der Spin in seiner kollektiven Umgebung (268565370)$$c268565370$$x1
001025711 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001025711 7001_ $$0P:(DE-Juel1)180392$$aGhosh, Sumit$$b1$$ufzj
001025711 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.108.165408$$gVol. 108, no. 16, p. 165408$$n16$$p165408$$tPhysical review / B$$v108$$x2469-9950$$y2023
001025711 8564_ $$uhttps://juser.fz-juelich.de/record/1025711/files/PhysRevB.108.165408.pdf$$yOpenAccess
001025711 8564_ $$uhttps://juser.fz-juelich.de/record/1025711/files/PhysRevB.108.165408.gif?subformat=icon$$xicon$$yOpenAccess
001025711 8564_ $$uhttps://juser.fz-juelich.de/record/1025711/files/PhysRevB.108.165408.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001025711 8564_ $$uhttps://juser.fz-juelich.de/record/1025711/files/PhysRevB.108.165408.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001025711 8564_ $$uhttps://juser.fz-juelich.de/record/1025711/files/PhysRevB.108.165408.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001025711 909CO $$ooai:juser.fz-juelich.de:1025711$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001025711 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a E.ON Digital Technology GmbH, 45131 Essen, Germany$$b0
001025711 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180392$$aForschungszentrum Jülich$$b1$$kFZJ
001025711 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)180392$$a Institute of Physics, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany$$b1
001025711 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001025711 9141_ $$y2024
001025711 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-27
001025711 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-27
001025711 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2023-10-27
001025711 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-27
001025711 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
001025711 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2022$$d2023-10-27
001025711 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-27
001025711 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-27
001025711 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-27
001025711 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001025711 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-27
001025711 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-27
001025711 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-27
001025711 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-27
001025711 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
001025711 980__ $$ajournal
001025711 980__ $$aVDB
001025711 980__ $$aUNRESTRICTED
001025711 980__ $$aI:(DE-Juel1)PGI-1-20110106
001025711 9801_ $$aFullTexts