001     1025711
005     20250203103303.0
024 7 _ |a 10.1103/PhysRevB.108.165408
|2 doi
024 7 _ |a 2469-9950
|2 ISSN
024 7 _ |a 2469-9977
|2 ISSN
024 7 _ |a 0163-1829
|2 ISSN
024 7 _ |a 0556-2805
|2 ISSN
024 7 _ |a 1095-3795
|2 ISSN
024 7 _ |a 1098-0121
|2 ISSN
024 7 _ |a 1538-4489
|2 ISSN
024 7 _ |a 1550-235X
|2 ISSN
024 7 _ |a 2469-9969
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-03094
|2 datacite_doi
037 _ _ |a FZJ-2024-03094
082 _ _ |a 530
100 1 _ |a Ghosh, Kumar J. B.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Exploring exotic configurations with anomalous features with deep learning: Application of classical and quantum-classical hybrid anomaly detection
260 _ _ |a Woodbury, NY
|c 2023
|b Inst.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1714718434_31336
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We present the application of classical and quantum-classical hybrid anomaly detection schemes to explore exotic configurations with anomalous features. We consider the Anderson model as a prototype, where we define two types of anomalies—a high conductance in the presence of strong impurity and a low conductance in the presence of weak impurity—as a function of random impurity distribution. Such anomalous outcome constitutes an imperceptible fraction of the data set and is not a part of the training process. These exotic configurations, which can be a source of rich new physics, usually remain elusive to conventional classification or regression methods and can be tracked only with a suitable anomaly detection scheme. We also present a systematic study of the performance of the classical and the quantum-classical hybrid anomaly detection method and show that the inclusion of a quantum circuit significantly enhances the performance of anomaly detection, which we quantify with suitable performance metrics. Our approach is quite generic in nature and can be used for any system that relies on a large number of parameters to find their new configurations, which can hold exotic new features.
536 _ _ |a 5211 - Topological Matter (POF4-521)
|0 G:(DE-HGF)POF4-5211
|c POF4-521
|f POF IV
|x 0
536 _ _ |a DFG project 268565370 - TRR 173: Spin+X: Der Spin in seiner kollektiven Umgebung (268565370)
|0 G:(GEPRIS)268565370
|c 268565370
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Ghosh, Sumit
|0 P:(DE-Juel1)180392
|b 1
|u fzj
773 _ _ |a 10.1103/PhysRevB.108.165408
|g Vol. 108, no. 16, p. 165408
|0 PERI:(DE-600)2844160-6
|n 16
|p 165408
|t Physical review / B
|v 108
|y 2023
|x 2469-9950
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1025711/files/PhysRevB.108.165408.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1025711/files/PhysRevB.108.165408.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1025711/files/PhysRevB.108.165408.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1025711/files/PhysRevB.108.165408.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1025711/files/PhysRevB.108.165408.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1025711
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a E.ON Digital Technology GmbH, 45131 Essen, Germany
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)180392
910 1 _ |a Institute of Physics, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-Juel1)180392
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5211
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-27
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV B : 2022
|d 2023-10-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-27
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21