001025739 001__ 1025739
001025739 005__ 20250204113847.0
001025739 0247_ $$2doi$$a10.1111/pce.14881
001025739 0247_ $$2ISSN$$a0140-7791
001025739 0247_ $$2ISSN$$a1365-3040
001025739 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-03122
001025739 0247_ $$2pmid$$a38488789
001025739 0247_ $$2WOS$$aWOS:001185548900001
001025739 037__ $$aFZJ-2024-03122
001025739 082__ $$a580
001025739 1001_ $$0P:(DE-Juel1)194449$$aBaca Cabrera, Juan$$b0$$eCorresponding author$$ufzj
001025739 245__ $$aHalf of the 18O enrichment of leaf sucrose is conserved in leaf cellulose of a C 3 grass across atmospheric humidity and CO2 levels
001025739 260__ $$aOxford [u.a.]$$bWiley-Blackwell$$c2024
001025739 3367_ $$2DRIVER$$aarticle
001025739 3367_ $$2DataCite$$aOutput Types/Journal article
001025739 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1714725777_30347
001025739 3367_ $$2BibTeX$$aARTICLE
001025739 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001025739 3367_ $$00$$2EndNote$$aJournal Article
001025739 520__ $$aThe 18O enrichment (Δ18O) of cellulose (Δ18OCel) is recognized as a unique archive of past climate and plant function. However, there is still uncertainty regarding the proportion of oxygen in cellulose (pex) that exchanges post-photosynthetically with medium water of cellulose synthesis. Particularly, recent research with C3 grasses demonstrated that the Δ18O of leaf sucrose (Δ18OSuc, the parent substrate for cellulose synthesis) can be much higher than predicted from daytime Δ18O of leaf water (Δ18OLW), which could alter conclusions on photosynthetic versus post-photosynthetic effects on Δ18OCel via pex. Here, we assessed pex in leaves of perennial ryegrass (Lolium perenne) grown at different atmospheric relative humidity (RH) and CO2 levels, by determinations of Δ18OCel in leaves, Δ18OLGDZW (the Δ18O of water in the leaf growth-and-differentiation zone) and both Δ18OSuc and Δ18OLW (adjusted for εbio, the biosynthetic fractionation between water and carbohydrates) as alternative proxies for the substrate for cellulose synthesis. Δ18OLGDZW was always close to irrigation water, and pex was similar (0.53 ± 0.02 SE) across environments when determinations were based on Δ18OSuc. Conversely, pex was erroneously and variably underestimated (range 0.02–0.44) when based on Δ18OLW. The photosynthetic signal fraction in Δ18OCel is much more constant than hitherto assumed, encouraging leaf physiological reconstructions.
001025739 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x0
001025739 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001025739 7001_ $$0P:(DE-HGF)0$$aHirl, Regina T.$$b1
001025739 7001_ $$0P:(DE-HGF)0$$aSchäufele, Rudi$$b2
001025739 7001_ $$0P:(DE-HGF)0$$aZhu, Jianjun$$b3
001025739 7001_ $$0P:(DE-HGF)0$$aLiu, Hai Tao$$b4
001025739 7001_ $$0P:(DE-HGF)0$$aGong, Xiao Ying$$b5
001025739 7001_ $$0P:(DE-HGF)0$$aOgée, Jérôme$$b6
001025739 7001_ $$0P:(DE-HGF)0$$aSchnyder, Hans$$b7$$eCorresponding author
001025739 773__ $$0PERI:(DE-600)2020843-1$$a10.1111/pce.14881$$gp. pce.14881$$n6$$p2274-2287$$tPlant, cell & environment$$v47$$x0140-7791$$y2024
001025739 8564_ $$uhttps://juser.fz-juelich.de/record/1025739/files/Plant%20Cell%20Environment%20-%202024%20-%20Cabrera%20-%20Half%20of%20the%2018O%20enrichment%20of%20leaf%20sucrose%20is%20conserved%20in%20leaf%20cellulose%20of%20a.pdf$$yOpenAccess
001025739 8564_ $$uhttps://juser.fz-juelich.de/record/1025739/files/Plant%20Cell%20Environment%20-%202024%20-%20Cabrera%20-%20Half%20of%20the%2018O%20enrichment%20of%20leaf%20sucrose%20is%20conserved%20in%20leaf%20cellulose%20of%20a.gif?subformat=icon$$xicon$$yOpenAccess
001025739 8564_ $$uhttps://juser.fz-juelich.de/record/1025739/files/Plant%20Cell%20Environment%20-%202024%20-%20Cabrera%20-%20Half%20of%20the%2018O%20enrichment%20of%20leaf%20sucrose%20is%20conserved%20in%20leaf%20cellulose%20of%20a.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001025739 8564_ $$uhttps://juser.fz-juelich.de/record/1025739/files/Plant%20Cell%20Environment%20-%202024%20-%20Cabrera%20-%20Half%20of%20the%2018O%20enrichment%20of%20leaf%20sucrose%20is%20conserved%20in%20leaf%20cellulose%20of%20a.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001025739 8564_ $$uhttps://juser.fz-juelich.de/record/1025739/files/Plant%20Cell%20Environment%20-%202024%20-%20Cabrera%20-%20Half%20of%20the%2018O%20enrichment%20of%20leaf%20sucrose%20is%20conserved%20in%20leaf%20cellulose%20of%20a.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001025739 909CO $$ooai:juser.fz-juelich.de:1025739$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001025739 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194449$$aForschungszentrum Jülich$$b0$$kFZJ
001025739 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
001025739 9141_ $$y2024
001025739 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-26
001025739 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-26
001025739 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2023-08-26$$wger
001025739 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-26
001025739 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
001025739 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001025739 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2025-01-07$$wger
001025739 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLANT CELL ENVIRON : 2022$$d2025-01-07
001025739 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-07
001025739 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-07
001025739 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2025-01-07
001025739 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2025-01-07
001025739 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-07
001025739 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2025-01-07
001025739 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-01-07
001025739 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2025-01-07
001025739 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-07
001025739 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPLANT CELL ENVIRON : 2022$$d2025-01-07
001025739 920__ $$lyes
001025739 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
001025739 980__ $$ajournal
001025739 980__ $$aVDB
001025739 980__ $$aUNRESTRICTED
001025739 980__ $$aI:(DE-Juel1)IBG-3-20101118
001025739 9801_ $$aFullTexts