001     1025761
005     20250203103424.0
024 7 _ |a 10.1109/IGARSS52108.2023.10282665
|2 doi
024 7 _ |a 10.34734/FZJ-2024-03129
|2 datacite_doi
024 7 _ |a WOS:001098971602119
|2 WOS
037 _ _ |a FZJ-2024-03129
100 1 _ |a Patnala, Ankit
|0 P:(DE-Juel1)186635
|b 0
|u fzj
111 2 _ |a IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium
|c Pasadena
|d 2023-07-16 - 2023-07-21
|w CA
245 _ _ |a Multi-Modal Self-Supervised Learning for Boosting Crop Classification Using Sentinel2 and Planetscope
260 _ _ |c 2023
|b IEEE
295 1 0 |a IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium
300 _ _ |a 2223 - 2226
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1714578818_3667
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
500 _ _ |a ISBN: 979-8-3503-2010-7
520 _ _ |a Remote sensing has enabled large-scale crop classification to understand agricultural ecosystems and estimate production yields. Since few years, machine learning is increasingly used for automated crop classification. However, most approaches apply novel algorithms to custom datasets containing information of few crop fields covering a small region and this often leads to poor models that lack generalization capability. Therefore in this work, inspired from the self-supervised learning approaches, we devised and compared different approaches for contrastive self-supervised learning using Sentinel2 and Planetscope data for crop classification. In addition, based on the dataset DENETHOR, we assembled our own dataset for the experiments.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef Conference
700 1 _ |a Stadtler, Scarlet
|0 P:(DE-Juel1)180752
|b 1
|u fzj
700 1 _ |a Schultz, Martin G.
|0 P:(DE-Juel1)6952
|b 2
|u fzj
700 1 _ |a Gall, Juergen
|0 P:(DE-HGF)0
|b 3
773 _ _ |a 10.1109/IGARSS52108.2023.10282665
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1025761/files/IGARSS_2023_main_proceedings_final.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1025761/files/IGARSS_2023_main_proceedings_final.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1025761/files/IGARSS_2023_main_proceedings_final.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1025761/files/IGARSS_2023_main_proceedings_final.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1025761/files/IGARSS_2023_main_proceedings_final.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1025761
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)186635
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)180752
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)6952
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2024
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21