Hauptseite > Publikationsdatenbank > Multi-Modal Self-Supervised Learning for Boosting Crop Classification Using Sentinel2 and Planetscope > print |
001 | 1025761 | ||
005 | 20250203103424.0 | ||
024 | 7 | _ | |a 10.1109/IGARSS52108.2023.10282665 |2 doi |
024 | 7 | _ | |a 10.34734/FZJ-2024-03129 |2 datacite_doi |
024 | 7 | _ | |a WOS:001098971602119 |2 WOS |
037 | _ | _ | |a FZJ-2024-03129 |
100 | 1 | _ | |a Patnala, Ankit |0 P:(DE-Juel1)186635 |b 0 |u fzj |
111 | 2 | _ | |a IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium |c Pasadena |d 2023-07-16 - 2023-07-21 |w CA |
245 | _ | _ | |a Multi-Modal Self-Supervised Learning for Boosting Crop Classification Using Sentinel2 and Planetscope |
260 | _ | _ | |c 2023 |b IEEE |
295 | 1 | 0 | |a IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium |
300 | _ | _ | |a 2223 - 2226 |
336 | 7 | _ | |a CONFERENCE_PAPER |2 ORCID |
336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
336 | 7 | _ | |a conferenceObject |2 DRIVER |
336 | 7 | _ | |a Output Types/Conference Paper |2 DataCite |
336 | 7 | _ | |a Contribution to a conference proceedings |b contrib |m contrib |0 PUB:(DE-HGF)8 |s 1714578818_3667 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a Contribution to a book |0 PUB:(DE-HGF)7 |2 PUB:(DE-HGF) |m contb |
500 | _ | _ | |a ISBN: 979-8-3503-2010-7 |
520 | _ | _ | |a Remote sensing has enabled large-scale crop classification to understand agricultural ecosystems and estimate production yields. Since few years, machine learning is increasingly used for automated crop classification. However, most approaches apply novel algorithms to custom datasets containing information of few crop fields covering a small region and this often leads to poor models that lack generalization capability. Therefore in this work, inspired from the self-supervised learning approaches, we devised and compared different approaches for contrastive self-supervised learning using Sentinel2 and Planetscope data for crop classification. In addition, based on the dataset DENETHOR, we assembled our own dataset for the experiments. |
536 | _ | _ | |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5111 |c POF4-511 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef Conference |
700 | 1 | _ | |a Stadtler, Scarlet |0 P:(DE-Juel1)180752 |b 1 |u fzj |
700 | 1 | _ | |a Schultz, Martin G. |0 P:(DE-Juel1)6952 |b 2 |u fzj |
700 | 1 | _ | |a Gall, Juergen |0 P:(DE-HGF)0 |b 3 |
773 | _ | _ | |a 10.1109/IGARSS52108.2023.10282665 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1025761/files/IGARSS_2023_main_proceedings_final.pdf |
856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/1025761/files/IGARSS_2023_main_proceedings_final.gif?subformat=icon |
856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/1025761/files/IGARSS_2023_main_proceedings_final.jpg?subformat=icon-1440 |
856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/1025761/files/IGARSS_2023_main_proceedings_final.jpg?subformat=icon-180 |
856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/1025761/files/IGARSS_2023_main_proceedings_final.jpg?subformat=icon-640 |
909 | C | O | |o oai:juser.fz-juelich.de:1025761 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)186635 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)180752 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)6952 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5111 |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
980 | _ | _ | |a contrib |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a contb |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|