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ABSTRACT

Remote sensing has enabled large-scale crop classification to
understand agricultural ecosystems and estimate production
yields. Since few years, machine learning is increasingly used
for automated crop classification. However, most approaches
apply novel algorithms to custom datasets containing infor-
mation of few crop fields covering a small region and this
often leads to poor models that lack generalization capabil-
ity. Therefore in this work, inspired from the self-supervised
learning approaches, we devised and compared different ap-
proaches for contrastive self-supervised learning using Sen-
tinel2 and Planetscope data for crop classification. In addi-
tion, based on the dataset DENETHOR, we assembled our
own dataset for the experiments.

Index Terms— Optical remote sensing, crop classifica-
tion, contrastive learning, multi-modal contrastive learning,
time-series, self-supervised learning

1. INTRODUCTION

Remote sensing has accumulated vast amount of data with
improved capability of new satellite missions such as Sen-
tinel2 [1] and Landsat'. These missions cover entire globe
at a regular time interval making them valuable resources for
crop classification, which heavily relies on temporal patterns.
Along with the advent of machine learning to solve complex
problems, applications such as crop classification are widely
being automated. Though machine learning facilitates large
scale crop mapping but labeling is time consuming and re-
quires skilled human efforts. The need for generalize models
without the need of additional manual annotations and the de-
velopment of advanced algorithms in the field of deep learn-
ing has motivated the development of techniques such as self-
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Fig. 1. Dataset for multi-modal self-supervised learning
experiment setup. None of the fields are overlapping.

supervised learning. Self-supervised learning relies on pre-
text tasks, and with recent advancement, contrastive learning
[2] has shown promising results. Contrastive learning relies
on contrastive losses such as InfoNCE [3] and augmentation.
The contrastive learning method relies on augmentation of a
data sample and aims to maximize similarity of the data sam-
ple and its augmented version but such augmentation for raw
satellite data is non-trivial. For tabular data i.e. pixels in our
case, the task of obtaining augmented data is not trivial, thus
we relied on multi-modal contrastive learning where the aug-
mented version is obtained from different sources; Sentinel2
and Planetscope. The end-user does not necessary require
both sources to apply the model to end application and still
can avail implicitly the benefits of both sources. In this work,
we devised two different types of alignment; point-wise and
time-wise for developing a pre-trained model for crop classi-
fication. We used DENETHOR [4] dataset to assemble data
for our experiments as it provides multiple sources of data for
the same geographical region. To our knowledge, there ex-
ist no work using contrastive learning on tabular data in the
field of remote sensing. We adopted SCARF algorithm [5]
for uni-modal self-supervised learning as a baseline.

2. DATASET
Figure 1 gives a visual description of our strategy in assem-
bling DENETHOR for our experiments. For our experi-
ments, we need a pre-training dataset and different down-
stream datasets to conduct self-supervised experiments.



The pre-training dataset is used to pre-train a model using
a self-supervised approach and downstream datasets are
used to evaulated the pre-trained model. We used both
DENETHOR'’s training and validation set to assemble the
dataset for our experiments. We did 70-21-9 random split of
cropfields to the DENETHOR's training dataset. The 70% is
used to obtain pre-training data whereas 21-9 split is used to
obtain training and validation dataset for downstream taskl.
We did 70-30 random split on DENETHOR’s validation
dataset to obtain training and validation dataset for down-
stream task2. DENETHOR’s training and validation dataset
are from different regions as well as different timespans.

2.1. Point-wise pre-training dataset

For the point-wise pre-training dataset, we randomly selected
100,000 pixels from each of the 144 timestamps available
for Sentinel2. To obtain corresponding pairs from Plan-
etscope, we used the same region and the same timestamp.
It is to be noted that Sentinel2 has a pixel resolution of
10m/pa whereas Planetscope has a resolution of 3m/pzx, so
we aligned a pixel of Sentinel2 to 3 x 3 pixels of Planetscope.
In total, we used 14,400,000 Sentinel2 pixels for this ex-
perimental setup. The top part of Figure 2 shows the data
alignment of point-wise self-supervised learning.

2.2. Time-wise pre-training dataset

Contrast to point-wise which focuses on aligning pixels, in
the time-wise setup, we aligned the time series of a Sentinel2
pixel to the corresponding 3 x 3 Planetscope pixels’ time
series. Sentinel2 has a temporal revisit time of 5 — 6 days
whereas Planetscope has a daily visit. We aligned Sentinel2
with relatively coarser temporal resolution to Planetscope
to avail benefits of its finer temporal resolution. We ran-
domly selected time series of 150,000 pixels. The bottom
part of Figure 2 shows the data alignment of time-wise self-
supervised learning.

2.3. Dataset for downstream tasks

Downstream tasks are used for evaluating the pre-trained
model. As shown in Figure 1, we created two downstream
tasks i.e. with DENETHOR’s training and validation set. We
randomly selected 5000 pixels and 1000 pixels for 9 crop
types separately for both of them. This yielded two balanced
datasets with 45000 training data and 9000 validation data.

3. METHODS

3.1. Model architectures

We used three different categories of networks i.e. Bi-
directional LSTM [6]( recurrent network), inception time [7]
(convolutional network) and position encoded transformer [8]
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Fig. 2: Data alignment for point-wise(top) and time-
wise(bottom) self-supervised learning methods.

(transformer network). We obtained 10 variant from each cat-
egory by varying different hyperparameters such as number
of layers, number of hidden dimension etc. using optuna [9].

3.2. Multi-modal self-supervised methods

As shown in Figure 2, in the point-wise method pixels are
aligned in both sources whereas in time-wise method time se-
ries are aligned. Different architectures were used for self-
supervised model based on their feasibility. Inspired from
resnets, for point-wise methods we used skipped connection
MLP and named it ResMLP. For time-wise self-supervised
methods, we used DeiT [10] inspired transformers where we
replaced initial 2D convolution layers with 1D convolution to
adapt it to time series. For both types, we adapted the original
SimCLR loss function to multiple modes.

3.3. Uni-modal self-supervised experiments

For a baseline uni-modal contrastive learning on tabular data,
we used random feature corruption from SCARF [5] is used
to obtain augmented version of the data. As we used sin-
gle source here, so we used the original SImCLR [11] loss
function. Both the ResMLP and transformer model are kept
same as the ones corresponding to Sentinel2 in our multi-
modal setup. In the point-wise self-supervised, representa-
tion of each pixel is obtained separately whereas in the case
of time-wise, the pre-trained model processes a time series in-
put and returns an embedded time series as its representation.

4. EXPERIMENTS AND RESULTS

We randomly obtained 10 different models for each category
(LSTM, inception and transformers) and trained them on raw
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Fig. 3: Win-matrix and relative gain box-plot of different self-supervised methods on downstream taskl. From left :

LSTM, transformer, and inception

refelction values using standard supervised methods as the
reference. For the point-wise, we used a 8 layer ResMLP
model with both hidden dimension and output dimension as
256. For time-wise, we used encoder part of original trans-
former with 4 layers, 1D convolution with 256 kernels with
an output dimension of 128. After pre-training, the repre-
sentation are passed through 10 networks with the same hy-
perparameters as the supervised models. To evaluate the per-
formance, we used win-matrices and box-plots to show the
relative gain over the corresponding supervised baseline ex-
periment.

Figures 3 and 4 show our multi-modal self-supervised
approach outperforms the uni-modal self-supervised experi-
ments. It is clearly evident that self-supervised learning using
multiple complimentary sources learns an expressive repre-
sentation of crops. The SCARF algorithm showed promising
result in OPENML-CC18 [12] benchmark dataset but in the
case of our remote sensing dataset, we did not find good re-
sults. The time-wise method performed well on downstream
task1 (relative box-plots from Figure 3) but failed on down-
stream task?2 (relative box-plots from Figure 4). Transformers
being larger model with more hyperparameters are prone to
learn noise in the case of noisy data. So, it did not generalize
well to data from other region and time.

Despite using fine temporal information in the time-wise
self-supervised learning, we did not find improvement in the
scores. The reason could be the batch size. SimCLR loss
function is highly dependent on the batch size due to the
use of contrastive type loss. Transformers when compared
to ResMLP are larger in size, hence consumes more mem-
ory. Thus to fit in the limited memory, the batch size of our

time-wise experiment setup is restricted to 256 whereas for
ResMLP, we could able to fit 1024 data in a batch.

The fine temporal resolution definitely gives more dense
information to the model. The future prospects wiil be on
how to effectively use the fine temporal resolution to improve
the time-wise self-supervised model. We proposed an idea to
adapt multiple source to the original BERT [13]. With BERT
kind of setup, it will be easier to facilitate large batch size in a
time-wise self-supervised setting. In addition, we want to add
an auxiliary task exploiting data’s seasonality.

5. REFERENCES

[1] M. Drusch, U. Del Bello, S. Carlier, O. Colin, V. Fer-
nandez, F. Gascon, B. Hoersch, C. Isola, P. Laberinti,
P. Martimort, A. Meygret, F. Spoto, O. Sy, F. March-
ese, and P. Bargellini, “Sentinel-2: Esa’s optical high-
resolution mission for gmes operational services,” Re-
mote Sensing of Environment, vol. 120, pp. 25-36, 2012.

[2] Xiao Liu, Fanjin Zhang, Zhenyu Hou, Li Mian, Zhaoyu
Wang, Jing Zhang, and Jie Tang, “Self-supervised learn-
ing: Generative or contrastive,” IEEE Transactions on
Knowledge and Data Engineering, pp. 1-1, 2021.

[3] Aéron vanden Oord, Yazhe Li, and Oriol Vinyals, “Rep-
resentation learning with contrastive predictive coding,”
CoRR, vol. abs/1807.03748, 2018.

[4] Lukas Kondmann, Aysim Toker, Marc RuBwurm,
Andrés Camero, Devis Peressuti, Grega Milcinski,
Pierre-Philippe Mathieu, Nicolas Longépé, Timothy



supervised

point-wise
uni-modal

point-wise
multi-modal

im

Percentge gain for Istm(%)

Sy,
0
s,%%

D0 1 P04 1y G
ing., 0y, P
0, e, e

0%

uuuuuuuuu

2/10 0710
310

310 310 210

point-wise | 4710
multi-modal 2

ise

0/10 010  0/10

e
multi-modal

O0j 1Py 1y b
ing, P2y,
U e e

& 'S¢ 'Se 7S¢ 'S¢ /Se
Togse Mogle Mg 10 Wiogy o0 oge

W
5
208"

o,

oy 1.0

08

point-wise
uni-modal

06

04

0.2

0.0

5.0
2.5
0.0

I

| g
. ! ELI

—10.0 1

Percentge gain for transformer(%)

-12.54

i

Percentge gain for inception(%)

—

point-wise time-wise
multi-modal  multi-modal
Pretrain type

point-wise

int-wise point-wise
uni-modat

point-wise
uni-modal

time-wise

multi-modal  multi-modal
Pretrain type

point-wise time-wise
multi-modal  multi-modal
Pretrain type

point-wise
uni-modal

Fig. 4: Win-matrix and relative gain box-plot of different self-supervised methods on downstream task2. From left :
LSTM, transformer, and inception

(5]

(6]

(7]

(8]

Davis, Giovanni Marchisio, Laura Leal-Taixé, and
Xiao Xiang Zhu, “DENETHOR: The dynamicearth-
NET dataset for harmonized, inter-operable, analysis-
ready, daily crop monitoring from space,” in Thirty-fifth
Conference on Neural Information Processing Systems
Datasets and Benchmarks Track (Round 2), 2021.

Dara Bahri, Heinrich Jiang, Yi Tay, and Donald Metzler,
“SCARE: self-supervised contrastive learning using ran-
dom feature corruption,” CoRR, vol. abs/2106.15147,
2021.

Savelie Cornegruta, Robert Bakewell, Samuel Withey,
and Giovanni Montana, ‘“Modelling radiological lan-
guage with bidirectional long short-term memory net-
works,” in Proceedings of the Seventh International
Workshop on Health Text Mining and Information Anal-
ysis, Auxtin, TX, Nov. 2016, pp. 17-27.

Hassan Ismail Fawaz, Benjamin Lucas, Germain
Forestier, Charlotte Pelletier, Daniel F. Schmidt,
Jonathan Weber, Geoffrey 1. Webb, Lhassane
Idoumghar, Pierre-Alain Muller, and Francois Pe-
titjean, “InceptionTime: Finding AlexNet for time
series classification,” Data Mining and Knowledge
Discovery, vol. 34, no. 6, pp. 1936-1962, sep 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, L ukasz
Kaiser, and Illia Polosukhin, “Attention is all you need,”
in Advances in Neural Information Processing Systems,
I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach,

[9]

[10]

(11]

[12]

[13]

R. Fergus, S. Vishwanathan, and R. Garnett, Eds., 2017,
vol. 30.

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru
Ohta, and Masanori Koyama, “Optuna: A next-
generation hyperparameter optimization framework,”
in Proceedings of the 25th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery amp; Data
Mining, New York, NY, USA, 2019, KDD 19, p.
2623-2631.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Fran-
cisco Massa, Alexandre Sablayrolles, and Hervé Jégou,
“Training data-efficient image transformers & distilla-
tion through attention,” CoRR, vol. abs/2012.12877,
2020.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey E. Hinton, “A simple framework for con-
trastive learning of visual representations,” CoRR, vol.
abs/2002.05709, 2020.

Bernd Bischl, Giuseppe Casalicchio, Matthias Feurer,
Pieter Gijsbers, Frank Hutter, Michel Lang, Rafael G.
Mantovani, Jan N. van Rijn, and Joaquin Vanschoren,
“Openml benchmarking suites,” 2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova, = “BERT: pre-training of deep
bidirectional transformers for language understanding,”
CoRR, vol. abs/1810.04805, 2018.



