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Meta-learning to address diverse Earth observation
problems across resolutions
Marc Rußwurm1,2✉, Sherrie Wang3,4, Benjamin Kellenberger 1,5, Ribana Roscher 6,7 & Devis Tuia 1

Earth scientists study a variety of problems with remote sensing data, but they most often

consider them in isolation from each other, which limits information flows across disciplines.

In this work, we present METEOR, a meta-learning methodology for Earth observation pro-

blems across different resolutions. METEOR is an adaptive deep meta-learning model with

several modifications that allow it to ingest images with a variable number of spectral

channels and to predict a varying number of classes per downstream task. It uses knowledge

mined from land cover information worldwide to adapt to new unseen target problems with

few training examples. METEOR outperforms competing self-supervised approaches on five

downstream tasks, showing its relevance to addressing novel and impactful geospatial pro-

blems with only a handful of labels.
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Earth science strives toward understanding and modeling
processes occurring at the Earth’s surface. Recently, more
and more studies have appeared using increasingly growing

amounts of satellite image data acquired at various spatial,
spectral, and temporal resolutions. To extract actionable knowl-
edge from this raw data, Earth scientists increasingly deploy deep
learning models1 that require large annotated datasets for per-
forming at their best. Each dataset is annotated with a focus on a
particular problem. Some, like building footprint segmentation2

or land cover classification3–5, are well-established, with large
annotated datasets being available. Others, like marine debris
detection6–8, are less explored and typically scarce in labels.
Furthermore, covariate shifts in satellite image data and concept
shifts in annotations9,10 are caused by various physical, envir-
onmental, social, and economic factors that differ between geo-
graphic regions, thus making it necessary to collect region-specific
datasets. These under-explored or highly region-specific problems
typically require researchers to invest a substantial amount of
time and effort in annotating data to describe the specific problem
in a machine-compatible way. Due to this heterogeneity in Earth
observation problems, a wide and diverse landscape of Earth
observation and remote sensing datasets has emerged. Each
dataset is typically dedicated to describing one particular problem
and viewed in isolation from the others. This is inefficient, as
many Earth observation problems still share common knowledge
that can inform different-but-related target problems. For
instance, large-scale land cover classification is often done with
different land cover categories and switching from one category
scheme to another typically requires re-training entire models,
even though the underlying problem remains very similar. Sys-
tematically utilizing this common knowledge between source and
target problems with a specific learning algorithm is the objective
of transfer learning11, while meta-learning12 extends this idea by
learning this learning algorithm itself13. In particular model-
based transfer learning, where the common knowledge is encoded
in the weights of deep learning models, has gained popularity
within deep learning14. Recently, remote sensing foundation
models, such as RingMo15 or contrastive self-supervised learning
models like SSLTransformerRS16 have been proposed that pre-
train very large deep learning models on unified heterogeneous
datasets, often made of collections of pre-existing smaller data-
sets. These models can then be fine-tuned on a particular
downstream problem with fewer annotated data points. Meta-
learning is also a transfer learning approach, in spirit similar to
these contrastively learned foundation models, but it aims at pre-
training a comparatively small model on a dataset of many source
problems. A general problem is here explicitly expressed as a
concrete task that contains a training (or support) dataset and a
testing (or query) dataset that needs to be classified correctly.
Three prominent taxonomies of meta-learning approaches
exist13, of which two have been used in remote sensing: metric-
based and optimization-based. Metric-based meta-learning17,18

pre-trains a deep feature extractor to create an expressive feature
space where test samples are matched to class prototypes defined
by each task training dataset. This feature extractor is frozen for
test tasks, similar to the self-supervised learning approaches pre-
trained on hand-designed source problems, which we compare to
in the results section. architecturally similar to self-supervised
learning strategies. Metric-based meta-learning has been parti-
cularly useful in remote sensing with high-resolution aerial RGB
imagery19–22. Most research19–21 addresses concept shift between
problems, where a new set of classes needs to be classified from a
few annotated images. Lunga et al.22 target covariate shift in high-
resolution imagery taken under different conditions, such as
varying viewing angles2, with a dedicated hashing and clustering
framework. In optimization-based meta-learning, the entire pre-

trained deep learning model is fine-tuned to a downstream task
with stochastic gradient descent. The model-agnostic meta-
learning algorithm (MAML)23 and its variants24–26 are promi-
nent examples of models that are explicitly optimized to be fine-
tuned to new problems with few annotated images. Optimization-
based approaches with MAML have been used predominantly on
Earth observation problems to mitigate concept and covariate
shifts in medium-resolution multi-spectral imagery: applications
cover global-scale cropland mapping27 or land cover
classification28, where covariate shifts make it difficult to transfer
models across different geographic regions. Despite their success,
current meta-learning approaches are not yet used to their full
potential since they focus on one family of problems for pre-
training and fine-tuning. They cover urban scene classification21,
land cover classification28, cropland classification and mapping27,
the most often taken in isolation from each other. It is common
that studies use one data source, such as high-resolution aerial
imagery19–21,29, or medium-resolution multi-spectral
imagery27,28 and address the model transfer within this single
homogeneous problem family. Only very recent approaches are
starting to address these limitations and focus on integrating
satellite imagery across heterogeneous problem families. For
instance, MOSAIKS29 uses a small single-layer small convolu-
tional network30 that extracts autocorrelation features from high-
resolution aerial imagery. The features from this featurization
approach proved effective when regressing socio-economic vari-
ables like housing prices, income, road length, nighttime lights,
and environmental factors like forest cover and elevation. In this
work, we address learning across different Earth observation
problems systematically in METEOR: a meta-learning metho-
dology for Earth observation problems across different resolu-
tions. It is an optimization-based meta-learning approach that
uses a small deep learning model with a single output. It is pre-
trained with the model-agnostic meta-learning (MAML)23 algo-
rithm to distinguish different land cover categories on medium-
resolution multi-spectral satellite data, as shown in Fig. 1.
Extending previous works, we focus explicitly on fine-tuning this
model to different heterogeneous real-world downstream classi-
fication problems involving a different number of classes, data
with different spatial and spectral resolutions and few annotated
samples. This heterogeneous transfer is enabled by three key
methodologies as follows: first, we replace all batch
normalization31 layers with instance normalization32 in the
model, as we show experimentally that classical, transductive
batch normalization23 has detrimental effects on downstream
problems with high-class imbalance (see “Designing Meteor").
Second, we dynamically change the convolutional kernels of the
input channels to adapt to problems with different spectral bands,
as detailed further in the methods section. Third, we address
downstream problems with different numbers of classes by pre-
training a binary meta-model, fine-tuning this model to each class
separately, and ensembling a one-vs-all classifier.

These key modifications result in METEOR: a single pre-
trained meta-model that can adapt to new problems of interest
across geographies and sensors from limited label information.
Using METEOR, domain experts can address these problems
with satellite data of varying spatial and spectral resolutions,
described by a few annotated images, and with a variable number
of target classes.

Results
In this results section, we first experimentally highlight the
importance of instance normalization in the METEOR model on
realistic downstream problems, beyond an idealized class-
balanced few-shot setting (Table 1). We then compare
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METEOR’s meta-model to other state-of-the-art approaches
within homogeneous land cover classification problems from
different geographical regions (Table 2) and across different
heterogeneous problem fields with different resolutions (Table 3).
Finally, in the section “Interpreting and explaining METEOR’s
predictions across geospatial problems”, we highlight the diversity
of problems to which METEOR can be applied. We do so by a

qualitative analysis of several example use-cases Earth scientists
may encounter.

Designing METEOR. Table 1 shows the importance of instance
normalization for class-imbalanced downstream problems
(DFC2020) experimentally. This describes the central finding that
enabled the deployment of this meta-learning approach across
different realistic use-cases presented in this work. It shows the
pre-training of METEOR with different configurations (rows in
the table) tested on two datasets of test tasks (columns) of a very
different nature regarding class-balancing. In all the experiments
of this work, we used the same METEOR meta-model trained on
globally distributed land cover tasks from the train regions of the
Sen12MS dataset5 (dataset details in the Methods section). The
Sen12MS-column in Table 1 shows the model performance on
1000 class-balanced binary 4-way 2-shot tasks with 16 images per
task from the Sen12MS test areas. This dataset presents an
idealized class-balanced configuration that is common in few-
shot meta-learning benchmarks18,23 where always the same
number of images per class has to be classified. The DFC2020-
column shows the performance in the seven geographic areas
from the Data Fusion Contest 2020 (DFC2020) dataset33. Here, a
severe class imbalance is present where some land cover cate-
gories, such as water, are more frequent than others. In com-
parison to Sen12MS, the DFC2020 datasets present a more
realistic land cover classification scenario in a class-imbalanced
setting: depending on the region, the number of images available
varies from 476 to 1439, and the number of classes from 5 to 7;
consequently, the support images used for training the specific
task-models also varies from 50 to 70 for a 10-shot training. Note
that the accuracies between these two columns are not directly
comparable due to the different difficulties of the respective
datasets. Instead, we are interested in highlighting which pre-
training configurations lead to the best results on idealized
(Sen12MS) or realistic (DFC2020) downstream tasks.

Fig. 1 Overview of METEOR in as a deep learning model pre-trained on land cover source tasks and deployed on diverse downstream tasks. A task is a
(small) dataset containing few annotated images, divided into independent train and test sets. The task data describes a new problem in a format that a
machine learning model can be optimized on. In METEOR, shown in (b), a randomly initialized meta-model is pre-trained with model-agnostic meta-
learning (MAML)23 to solve land cover classification source tasks, shown in (a). MAML23 yields a deep meta-model that has explicitly learned to learn
from different tasks with few labeled images. In each pre-training task, the model must distinguish one randomly chosen land cover type from others using
satellite imagery of the same geographic area. A map of geographic regions from the Sen12MS5 dataset with three examples of such pre-training tasks
from Greece, Japan, and USA. The pre-trained meta-model can then be fine-tuned to diverse downstream problems shown in (c) with only few labeled
images, thus leading to problem-specific task-models.

Table 1 Different pre-training configurations tested on
idealized (Sen12MS)5 and realistic (DFC2020)33 test tasks.

Task-datasets Sen12MS DFC2020

Number of tasks 1000 7

Task design Idealized Realistic

Label distribution Balanced Imbalanced

Exp. #1: fixed algorithm (MAML) vary normalization
MAML Instance norm (IN)54 0.78 0.82 ± 0.08

Transductive BN23 0.85 0.26 ± 0.05
Conventional BN31 0.84 0.60 ± 0.18
Tasknorm-I25 0.83 0.59 ± 0.24
Groupnorm60 0.72 0.54 ± 0.20

Exp. #2: vary algorithms fixed normalization (IN)
IN Fo-MAML23 0.66 0.77 ± 0.11

SparseMAML24 0.74 0.79 ± 0.11
SparseFoMAML24 0.63 0.74 ± 0.13

The meta-model is tested on Sen12MS test tasks with a similar structure to the pre-training
source tasks (column Sen12MS) and on unbalanced land cover tasks from the DFC2020 dataset
(column DFC2020), where the label distribution of the target task is unknown. In experiment #1,
we fix the pre-training algorithm (model-agnostic meta-learning (MAML)23) and vary the
normalization of the network. Highlighted by underscores, transductive batch normalization
(BN)31 achieved the highest accuracy on the idealized Sen12MS test tasks, but performed worst
in the realistic use-case (DFC2020). We found that this finding also holds in experiment #2
where we fixed instance normalization and tested MAML against more recent meta-learning
models like SparseMAML24 or the first-order approximations of MAML (Fo-MAML) and
SparseMAML (SparseFoMAML). Overall, a deep learning model trained with instance norm
(IN) layers trained with the standard MAML algorithm performed best for all the results
presented in this work. We highlight best scores by fold face and, for DFC2020, we report one
standard deviation over five model runs with different query/support sets.

COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-023-01146-0 ARTICLE

COMMUNICATIONS EARTH & ENVIRONMENT |            (2024) 5:37 | https://doi.org/10.1038/s43247-023-01146-0 | www.nature.com/commsenv 3

www.nature.com/commsenv
www.nature.com/commsenv


Crucially, pre-training configurations of model-agnostic meta-
learning (MAML) that achieve high accuracies on the idealized
Sen12MS target tasks are not optimal for the more realistic
DFC2020 tasks with gaps up to 60% in accuracy, as shown in
Experiment 1 in Table 1. This performance gap is related to
normalization layers in the network architecture and has been
first identified and discussed by Bronskill et al.25. They show
empirically that the running calculation of batch statistics in
transductive batch normalization (BN) layers (used in the original
MAML implementation23) at test time allows the model to
exploit knowledge about the class balance to improve its accuracy.
In our experiments, we confirm that this exploitation allows a
MAML-trained model with transductive BN to achieve the
highest accuracy on idealized balanced tasks (85%) but results in
the worse accuracy (26%) in the realistic DFC2020 tasks

(underlined row in Table 1). To alleviate this issue, Bronskill
et al.25 proposed to replace batch normalization with their
proposed tasknorm-I25 normalization layers. However, we found
that simply replacing batch normalization with instance
normalization32 performed best on the realistically imbalanced
DFC2020 data by a large margin 20%, as shown in the top row of
Table 1. In experiment #2, we found that this configuration of
MAML with instance normalization (IN) also outperformed
more recently proposed meta-learning variants, such as
SparseMAML24 (in both the first-order SparseFoMAML and
Second-order SparseMAML variants) that achieved state-of-the-
art performance on machine learning benchmark datasets.
Concluding from these experiments, we use instance normal-
ization in a ResNet-12 deep neural network as the meta-model in
the remainder of this paper.

Table 2 Model comparisons within land cover problems.

Number of shots (training examples per class)

Model Avg. rank 1 2 5 10 15

SSL4EO 2.51 56.4 ± 9.7 72.8 ± 11.8 79.4 ± 10.2 80.5 ± 10.6 82.4 ± 10.3
METEOR 2.84 61.5 ± 10.7 69.2 ± 11.9 78.6 ± 11.2 81.5 ± 10.4 81.7 ± 11.9
MOSAIKS 2.86 61.3 ± 11.5 68.7 ± 14.8 77.3 ± 11.5 81.3 ± 10.3 84.7 ± 9.2
BASELINE 2.99 58.1 ± 11.9 71.2 ± 9.9 79.4 ± 7.9 81.0 ± 8.0 82.7 ± 7.9
SSLTRANSRS 5.70** 51.2 ± 10.5 61.4 ± 6.4 71.4 ± 8.4 74.2 ± 10.4 75.9 ± 11.0
SWAV 6.51** 46.5 ± 8.8 60.1 ± 13.0 67.6 ± 14.4 69.3 ± 14.4 72.1 ± 14.5
DINO 6.73** 45.4 ± 11.8 58.4 ± 13.7 66.9 ± 15.7 69.1 ± 14.9 71.6 ± 14.9
SECO 6.83** 49.1 ± 12.4 55.9 ± 13.2 66.5 ± 15.5 66.6 ± 16.8 67.5 ± 19.0
SCRATCH 9.00** 36.7 ± 16.8 46.7 ± 13.2 49.9 ± 12.9 51.6 ± 16.4 54.6 ± 15.3
IMAGENET 9.03** 42.3 ± 12.8 48.7 ± 12.1 59.0 ± 15.2 59.9 ± 14.4 62.8 ± 15.8

We report averaged accuracies obtained on the seven DFC2020 regions. Each model is fine-tuned to the 5–7 classes of each DFC region individually, using an increasingly large support set of 1, 2, 5, 10,
and 15 training examples per class, i.e., shots. It is then tested on a query set containing all remaining images. We report the average rank (lower is better) to compare models across all shots
simultaneously. We further test for the significance of the differences to METEOR with a Wilcoxon Signed Rank test and indicate signficiant deviations by **.

Table 3 Quantitative comparison of METEOR with several state-of-the-art methods (rows) across different heterogeneous Earth
observation datasets (columns).

5-Shot problem Human
influence

Crop type mapping Land cover classification Marine
debris

Urban scenes

Dataset AnthPr.43 DENETHOR42 DFC2020-KR39 EuroSAT40 fl. obj.6 NWPU-
Urban41

Spatial res. 10 m 3m 10m 10m 10m <1 m

Spectral res. 10 bands 4 bands 13 bands 13 bands 12 bands 3 bands

No. of classes 2 3 5 10 2 5

No. of training
imgs

10 15 25 50 10 25

Model Rank (↓) Accuracy (↑)

METEOR 3.6 83.7 75.6 87.7 60.9 90.8 57.4
SWAV36 4.2 96.7 69.8 54.2 67.7 65.4 70.4
MOSAIKS29 4.3 86.4 76.4 82.3 57.9 88.8 54.0
DINO37 5.0 91.2 66.2 56.6 61.3 65.1 70.6
SECO35 4.7 91.4 61.7 67.6 62.7 65.9 67.4
SSLTRANSRS16 5.3 90.7 65.5 76.3 59.7 78.9 52.1
SSL4EO34 5.5 96.2 58.0 80.2 59.1 82.4 49.9
BASELINE 6.8* 89.0 60.8 87.4 39.8 69.8 36.7
PROTO17 8.3** 59.7 56.2 76.9 46.1 67.3 39.1
IMAGENET 8.8* 83.7 59.7 50.8 42.7 64.1 60.5
SCRATCH 9.5** 64.8 61.1 66.5 25.7 64.4 32.3

This heterogeneous setting is most challenging, as each evaluated task is characterized by a different number of spectral bands, number of classes, and spatial resolution. Here, METEOR achieves the
best average rank of 3.6 but is closely followed by SWAV with 4.2 and MOSAIKS with 4.3 across the evaluated datasets. Different models are optimal for different tasks, and no model dominates all
tasks. This is reflected in the Wilcoxon Signed Rank test that shows that the performance of METEOR is only significantly different (indicated by * and **) from the BASELINE, PROTO, IMAGENET,
SCRATCH models. Best values are highlighted by bold face.
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Comparison of METEOR to other state-of-the-art models. This
section compares METEOR with other state-of-the-art approa-
ches, modified for few-shot classification, either within homo-
geneous land cover classification tasks (Table 2) or across
different heterogeneous tasks (Table 3).

We compare METEOR to self-supervised approaches pre-
trained on multi-spectral satellite data (SSLTRANSRS16 and
SSL4EO34), on RGB satellite data (SeCo35), and on natural RGB
images SWAV36 and DINO37. As further comparisons, we train a
BASELINE to classify all 10 classes present in the training areas of
the Sen12MS dataset in a supervised way, and add a ResNet-50
model initialized on IMAGENET weights, and with random
initialization named SCRATCH. For these approaches, we load
the respective feature extractors with pre-trained weights, encode
the few training samples in the respective feature spaces, average
them to class prototypes and assign the test imagery to the class of
the nearest prototype, as done in Prototypical Networks17. In
Supplementary Notes 2, we show empirically that this strategy
leads to better results than fine-tuning a linear classifier when
considering few-shot problems with less than 50 examples per
class. We also generate MOSAIKS29 features dynamically for each
downstream task from the training data and predict the test data
with a random forest classifier. Models pre-trained with RGB
data, i.e., SECO, SWAV, DINO, and IMAGENET, are only able to
process the three RGB channels, while the remaining models
(METEOR, SSLRS-R50, SSL4EO, MOSAIKS, BASELINE) have
access to all 13 Sentinel-2 bands present in the DFC2020 data.

In terms of metrics, we report the averaged accuracy on the test
images (query set) that models achieved after being trained/fine-
tuned on the support set of each downstream task. To compare
across different datasets and configurations, we further report the
average rank to compare the different methods across all tasks
and configurations. A model that outperforms its competitors on
all tasks would have an average rank of 1 (first). We further test
statistically if the differences in accuracies across different
datasets are significantly different to METEOR with a two-sided
Wilcoxon signed rank test38. We indicate significance levels “*" if
p < 0.1 and “**” if p < 0.05. No star indicates the difference
between classifiers is not significant.

Comparison within land cover problems. We first compare
METEOR on land cover classification target problems from seven
DFC2020 regions that use the same imaging sensor (13-bands,
Sentinel-2) and classes with similar semantics as the pre-training
tasks (Sen12MS dataset) in Table 2.

Overall, METEOR compares well to their multi-spectral
methods with an average rank of 2.84. Only SSL4EO11 achieves
a slightly better average rank of 2.51. Also, the supervised
BASELINE achieves high few-shot accuracies with an average
rank of 2.99, as the data and classes that this model was trained
on (Sen12MS) align well with the DFC2020 data. MOSAIKS,
SSL4EO, and the BASELINE are not significantly different from
METEOR in accuracy, as shown by the Wilcoxon signed rank
test38, while METEOR was significantly better on these problems
than SSLTRANSRS and all contrastive RGB approaches using
only RGB imagers (SWAV, DINO, SECO) with p values < 0.05, as
indicated by “**".

Comparison across diverse heterogeneous problems. In Table 3,
we again compare METEOR to other approaches, but this time in
heterogeneous tasks beyond land cover classification. The tasks
involve Earth observation sensor data of different spatial and
spectral resolutions, as indicated in the top rows. They cover
common disciplines, such as land cover classification
(DFC202039, EuroSAT40) and classification of urban scenes from

the NWPU-RESISC41 dataset, as well as more specific problems,
such as a mono-temporal classification of crop types
(DENETHOR42). Two niche applications are also studied to
highlight even more the versatility of a single METEOR meta-
model to address the diversity of Earth observation problems:
AnthroProtect43, which estimates the presence of human influ-
ence by classifying images of naturally protected areas from
unprotected ones, and marine debris6, which classifies the pre-
sence of floating objects, such as marine litter, in ocean scenes.
The bottom row of Table 3 shows image examples of each of
these downstream tasks. Further qualitative results from these
problem fields are provided in the next results section. Analo-
gously to the previous comparison, we use the average rank as the
primary metric to compare the different methods across all tasks
and assess whether the performance is significantly better than
METEOR with the Wilcoxon signed rank test. All experiments in
Table 3 are reported for 5-shots classification.

Here, METEOR compares well to the other approaches on
these heterogeneous 5-shot problems and achieves the lowest
average rank of 3.6. Still, it only achieves the best accuracy on two
datasets (DFC2020-Kippa-Ring (KR) and floating objects6), while
being among the best models for the other datasets. The main
exception is NWPU, where DINO37 andSWAV36 achieved the
best results. We hypothesize that the fine-grained features learned
during contrastively pre-training from natural images in these
approaches are here particularly helpful for very high-resolution
urban scene imagery.

Interestingly, only METEOR and MOSAIKS29 are among the
best solutions for both few-shot problems within the land cover
field (Table 2) and across heterogeneous problems (Table 3). For
instance, the ResNet-50 trained contrastively with momentum
contrast44 from SSL4EO34 only achieved rank 5.5 on the
heterogeneous problems tested in this work. This is most
prominently shown by the supervised BASELINE, trained on
land cover Sen12MS data, which is competitive within land cover
downstream tasks, but among the worst model in the hetero-
geneous tasks of Table 3.

Due to the high variance in accuracies across these diverse
problems, only few comparison models (BASELINE, prototypical
networks (PROTO), IMAGENET pre-training and a randomly
initialized model SCRATCH) can be considered significantly
worse than METEOR with the Wilcoxon signed rank test. Still, we
can conclude from this experiment that METEOR compares well
to the state-of-the-art in pre-training models on diverse few-shot
Earth observation problems and can be applied to diverse
heterogeneous problems successfully and that only METEOR and
MOSAIKS achieve such consistency across tasks. After these
quantitative comparisons, we explore METEOR prediction
qualitatively on the diverse problems and provide some insight
using interpretability methods. The iso-lines in the bottom panels
show occlusion sensitivity. These indicate a decrease in prediction
probability (in percentage) if this particular area is occluded.

Interpreting METEOR’s predictions across problems. This
section studies the behavior of METEOR qualitatively in various
heterogeneous environmental problems. The tasks differ in
spectral and spatial resolution, demonstrating the broad useful-
ness of METEOR. The application of METEOR is as follows: a
task-specific model (indicated in dark gray in Fig. 1, as well as in
all figures in this section) is initialized in each task with the
parameters of the same pre-trained meta-model (drawn in red in
the figures). The task-specific model is then fine-tuned on a few
training samples from the support set of the task under study.
The following sections and figures illustrate the predictions
quantitatively and qualitatively, and use explainable machine
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learning45,46 interpretations of the predictions combined with
domain knowledge from the respective task to explain them.

In the first example in Fig. 2, the meta-model is fine-tuned on
five land cover classes with one example per class (1-shot setting)
in Kippa-Ring near Brisbane, Australia, which is one of the seven
DFC2020 regions. This leads to a task-model specialized in
predicting land cover in Australia defined by the training classes.
meta-model and fine-tuned with five training images. Each image
defines the representations of the land cover classes in this
downstream task, as shown at the bottom of the figure. The task-
model then classifies the remaining 677 images from this
geographic region, resulting in an average accuracy of 68%. This
accuracy is achieved with only five training images (averaged over
three runs with different train/test splits). With 40 training
images, i.e., in a ten-shot setting, 88% of the remaining images are
classified correctly, as shown quantitatively in Supplementary
Table 2.

Second, we consider the monitoring of deforestation, which is a
vital application to estimate drivers for climate change. We
acquired PlanetScope imagery47 with four spectral bands (RGB
+NIR) at 3-m resolution between 2017 and 2022 from the
Roraima state in northern Brazil (Fig. 3a). In this region, the
clearing of tropical forests between 2017 and 2022 is visible.
These scenes show the last 10 km of one of the multiple
orthogonal access roads to the BR-174 highway, which provides
infrastructure for deforestation in this region48. As a specific task,
we distinguish between forest and no-forest classes and train the
task-model with ten images from a deforested region (0°45’50"N
60°39’02"W) between 2017 and 2022 that is located north of the
test scenes shown in Fig. 3 (top row). Once fine-tuned on these
ten training images, the task-model then estimates a posterior
probability for forest and no-forest in the test scenes by
classifying 32 × 32 px image patches sampled on a regular grid.
This results in a coarse segmentation map, as shown in Fig. 3c, at
96 × 96 m resolution. The estimated probability maps closely
reflect the deforested areas visible in the satellite images.

Third, we address urban scene classifications from high-
resolution aerial or satellite RGB imagery with less than 1-m

ground sampling distance. We select the 3500 images pertaining
to five urban classes (industrial, commercial, and dense, medium,
sparse residential areas) from the NWPU-RESISC4541 dataset.
The meta-model of METEOR is fine-tuned to a task-model with
25 (five-shot) training images and achieves 65% accuracy on the
remaining 3475 images, as shown in the last column of Table 3.
Figure 4 presents one image of the test data, where the task-model
has estimated high classification scores of multiple classes. The
classification result is analyzed by an occlusion sensitivity
analysis46, which reveals that the irregularly spaced houses are
responsible for the high classification score of commercial areas.
At the same time, the regular rows of residential buildings are
recognized as medium residential. Similarly, we can deduce that
the 15% industrial score is caused by a single white building with
roof installations, which are structurally similar to some buildings
visible in the training set of the industrial class. This result on an
ambiguous example shows that, thanks to task tuning, METEOR
learns relevant features per each class: it correctly divided the
prediction scores across classes thanks to the one-against-all
learning.

Fourth is change detection, which can be realized by repeated
image classification of the same area at different dates. We use
METEOR on images of an explosion event in Beirut, Lebanon, on
August 4, 2020, where a warehouse storing ammonium nitrate
exploded after an initial fire. We acquired a sequence of 70 cloud-
free Sentinel-2 images of Beirut spanning from September 3,
2019, until March 21, 2021 (Fig. 5a). Two classes, pre-event and
post-event, are defined by taking the first and last five images
from the sequence as training samples, covering periods between
September 3 and 28, 2019, and February 19 and March 21, 2021,
respectively. The meta-model is fine-tuned on these ten images to
estimate probability scores for the two classes for each image in
the sequence. As visible in the bottom plot of Fig. 5, the
probability score for the class post-event remains low for all
images before the explosion event on August 4, 2020. It increases
sharply to 84.5% on the first image after the event on August 8
and remains high for the remaining images. An occlusion
sensitivity analysis shows that this increase in score for the

Fig. 2 Land cover classification in Kippa-Ring, Australia (one among the DFC2020 regions), when using one example per class (1-shot), so five
examples in total. We show the confusion matrix of the predictions obtained on the 677 remaining images, which have been classified at a 79.6%
accuracy in the first (of three) random splits. In 1-shot learning, the choice of training images is especially important, as the representation of classes are
solely defined by these single training examples. The second random split is only slightly worse with 78.4%, while the third split is only classified with 47%
accuracy. In that last case, several forest images were wrongly classified as grassland (not shown in the figure). To accommodate for this randomness, we
average the accuracy of all three random splits leading to a 1-shot accuracy of 68%. The variance between splits decreases with more shots, as can be seen
on the quantitative table in Supplementary Table 2.
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Fig. 3 Classification of deforested areas in the northern Brazilian Amazon forest. The task-model is initialized with the parameters of the meta-model
and fine-tuned to classify forested from deforested areas in the Amazon rain forest (0°41'05"N 60°37'42"W) shown in (a) with 4-band PlanetScope
imagery at 3-m ground resolution in (b). The ten training images, shown in the top panel, are taken from different areas (0°45'50"N 60°39'02"W) and
were acquired on multiple dates between 2017 and 2022. b Three test scenes 9.6 × 3.3 km from 2017, 2021, and 2022, where deforestation is visible. We
split these test scenes into 32 × 32 px tiles and predict the probability for the forest and no-forest classes to each tile. This tiling results in maps of
deforestation at 96 × 96 m resolution in (c).

Fig. 4 Urban scene classification with high-resolution RGB imagery. High-resolution (less than 1 m) RGB satellite imagery is employed in this example,
where we analyze the prediction of a challenging image where the model assigned multiple categories with a high classification probability. An occlusion
sensitivity analysis46 shows an irregular structure of houses, is partly recognized as a commercial area, as masking this part of the image decreases the
score of class “commercial” by 6%. Regularly spaced houses are visible that the model associates with medium residential. A single flat-top building with
roof installations causes the 15% probability for the industrial class. Note that similar white structures are present in the training set of the industrial class.
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post-event class is predominantly caused by the explosion crater
and the damages to adjacent buildings, as occluding these areas of
the image leads to a decrease of the post-event score of up to 24%.

Fifth and last, we explore semantic segmentation of marine
debris in satellite imagery, which is a vital requirement for
quantifying marine litter on the world’s oceans. We focus on
coastal regions close to major rivers deltas and where notable
plastic accumulation events were reported in the news6. The
ResNet-12 task-model, used for image classification, can be
modified for coarse semantic segmentation without changing the
weights of the underlying model, as outlined in the Methods
section. Thanks to this modification, it can now predict a score
for each pixel in the image. Despite this modification, the task-
model can still be initialized from the meta-model of METEOR.
We fine-tune it on five examples of marine debris on RGB
Sentinel-2 imagery from the coastal region of Accra, Ghana, from
a dataset provided by Mifdal et al.6. These training images are
shown in Fig. 6 alongside hand-annotated masks that serve as
prediction targets. The bottom part of Fig. 6 presents one test
image showing patches of liquid contaminants alongside the
estimated probability map for the presence of marine debris. We
provide a contour overlay of this probability map on the RGB
image alongside the annotations for this image as a reference. The
predictions show that the model has captured the nature of the
floating object detection task and accurately predicted the shapes
of floating marine litter using five training images only.

In summary, we demonstrate that with METEOR domain
experts can fine-tune a single deep neural network on various
downstream problems with few labeled examples. These down-
stream tasks can differ substantially from the land cover
classification source tasks that the meta-model was pre-trained
on in terms of problem scope, spatial, and spectral resolutions.

The downstream problems can be diverse and span from land
cover classification from different geographic regions over urban
scene classification with high-resolution RGB imagery to
segmenting marine debris at the sea surface. Few example images
are needed to represent the downstream task classes, allowing us
to define abstract categories, such as pre-event and post-event.
This abstraction is also meaningful for other use-cases, such as
land cover classification, where the representation of one land
cover, e.g., cropland, can vary greatly from continent to continent.
Crucially, leveraging a few labeled samples makes METEOR
applicable to various use-cases that Earth scientists address every
day.

Discussion and conclusion
This paper presents METEOR, a transfer learning methodology
based on model-agnostic meta-learning23 in which problem-
specific neural networks are learned from a global (meta-)model
using only few labeled examples describing such new problem.
This is enabled by three simple-to-implement but important
modifications (1) replacing transductive batch normalization with
instance norm in the meta-model, (2) ensembling multiple binary
classifiers to address problems with a varying number of classes,
and (3) dynamically changing the input channels to account for
problems with a different number of spectral bands. Thanks to
these modifications, the generic meta-model, originally pre-
trained to distinguish different land cover classes, can then
address a diverse set of heterogeneous remote sensing tasks that
vary in spatial and spectral resolution, as well as in the number of
classes. Such as a model that can be trained on a collection of
different-but-related tasks, and this can help in a variety of Earth
science disciplines, where annotating samples is particularly dif-
ficult or costly. In this regard, we have shown quantitative and

Fig. 5 Detection of changes with a sequence of multi-spectral medium-resolution imagery. This use-case shows the port of Beirut, Lebanon, where an
explosion event caused substantial damage on August 4, 2020. a A total of 70 Sentinel-2 images where we use the first and last five images as support set
to define the classes pre-event and post-event. task-model, which is fine-tuned on these examples. The meta-model in METEOR, shown in (b), is fine-
tuned on these two classes and predicts all remaining images in the sequence. In (c), we show the resulting probability for the post-event class, where it
remains low (0.6%) until August 3, 2020, and sharply rises probability of 84.5% on the following image of August 8, 2020. The crater and damaged
buildings from the event caused the sudden increase in this probability score, as revealed by the occlusion sensitivity analysis drawn in (d). A further
comparison to MOSAIKS and SSLTRANSRS is placed in Supplementary Fig. 5.
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qualitative experiments where a single pre-trained model can be
of use across a variety of diverse Earth science disciplines from
urban applications to deforestation mapping.

Our work extends related work based on meta-learning19,27,28,
self-supervised16,35,49 or self-taught learning29 from the homo-
geneous transfer learning setting (where all tasks share the same
problem nature and input space dimensions) to a heterogeneous
setting involving different satellite sensors and applications. In
particular, this transfer across different resolutions has been
identified as a major challenge toward a collective agenda on
artificial intelligence for Earth science data analysis50.

In contrast to the results on idealized Sen12MS test tasks (see
Table 1; Sen12MS-column), which are similar to those usually
obtained in meta-learning benchmarks, we found that using
regular instance normalization in the deep meta-model neural
network outperformed recently proposed meta-learning variants
(e.g. SparseMAML24, TaskNorm-I25) on realistic and class-
imbalanced remote sensing problems. This finding enabled us
to explore and compare METEOR with related work on tasks
within the problem field of land cover classification (Table 2) and
across challenging heterogeneous remote sensing problems
(Table 3); in all comparisons, METEOR performed very well for
few-shot classification methods, achieving the best average rank
on heterogeneous problems and the second best within land cover
problems. We studied in depth the behavior of METEOR in a
series of potential use-cases, from change detection to marine
debris segmentation, where domain experts can deploy METEOR
to extract actionable information and insights into specific
problems.

While this work presents a step toward deploying a learning-
from-tasks framework on real-world Earth observation applica-
tions, it revealed some limitations that future research will need to
address. First, implementing the task-model as an ensemble of
one-versus-all classifiers (described in the Methods section) leads
to poor performance when the number of classes is large. While
predicting ten classes, as in the EuroSAT benchmark40 was still
accurate, performance was sub-par in the case of 45 classes as in
the full NWPU-RESIC4541. Additionally, while fine-tuning the
meta-model on a few annotated samples is computationally
efficient, learning it in the first place with model-agnostic meta-

learning is more memory expensive than pre-training with self-
supervised algorithms. Training larger convolutional neural net-
works like ResNet-50 (23 million parameters) or ResNet-152 (60
million parameters) is considered out-of-reach for current meta-
learning approaches.

Another point is the nature of the pre-training task. In this
work, we limited the pre-training of the METEOR meta-model
on the source tasks from land cover classification to demonstrate
the versatility toward radically different target problems. Still, we
believe that expanding the pre-training scope toward other
labeled and unlabeled source tasks will likely further improve its
performance on downstream Earth observation problems. Our
work is valuable to several groups of domain experts, users, and
scientists. First, the METEOR model can support researchers who
aim to deploy state-of-the-art deep learning models in their
particular field of expertise. METEOR is usable with the limited
labeled data often available from specialized field campaigns,
which often provide high-quality samples but are scarce in
quantity. Moreover, we release METEOR as an open-source,
simple, and ready-to-use package in Python. Second, we believe
that our experiments across various remote sensing tasks can
serve as a benchmark to compare future machine learning algo-
rithms and measure the performance in a broader set of mean-
ingful applications. In general, the results of this work indicate,
along with other recent advances in meta-learning and self-
supervised learning, that deep learning models trained on a
learning-from-tasks framework can be employed for a versatile
family of downstream problems. These models can provide
increasingly intelligent solutions that, when deployed on
impactful Earth science problems, help address some of the most
pressing issues of our time.

Methods
General description of METEOR. The meta-learning metho-
dology for Earth observation problems across different resolu-
tions (METEOR) is a heterogeneous transfer learning approach.
It is designed to capture knowledge across data modalities (dif-
ferent Earth observation sensor types) and efficiently adapt to
different tasks (variable in terms of task semantics, number of

Fig. 6 Segmentation of marine debris with multi-spectral medium-resolution imagery.Marine debris on a 12-band, medium-resolution (10m) Sentinel-2
scene near Accra, Ghana (October 31, 2018) have been visually detected and annotated by Mifdal et al.6 in (a). This task-model is modified for
segmentation and initialized with the weights of the meta-model. Five annotated images of (a) serve as a training dataset to fine-tune the task-model. b A
test image and the corresponding prediction in (c) by the task-model to a map showing the probability of marine debris for each pixel. The same meta-
model, as in the previous use-cases, achieves these predictions, highlighting the versatility of meta-learning for various Earth observation problems with
few training samples.
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classes, etc.). To do so, METEOR consists of a meta-model and a
task-model (Fig. 1). The meta-model encodes knowledge from
Earth observation source tasks and is pre-trained with the model-
agnostic meta-learning algorithm23 (detailed later) on a dataset of
source tasks. The task-model is initialized with the parameters of
the meta-model and fine-tuned on the particular problem with a
few training samples describing the target task at hand. This
framework falls into the family of model-based transfer
learning11,51 where knowledge from source tasks is encoded in
model parameters to inform a target task. Other approaches from
this category are self-supervised learning and pre-training, e.g., on
ImageNet52.

Meta-model implementation and pre-training on source tasks.
The meta-model is a deep ResNet-1253 neural network following
the implementation of Oh et al.26. All batch normalization31

layers are replaced with instance normalization54 (see Table 1).
The model used in all experiments has 15 input channels to
accommodate the two radar bands of Sentinel-1 and the
13 spectral channels of the Sentinel-2 satellite and a single output
dimension for binary one-versus-all classifications. We chose 15
channels to utilize all bands in the Sen12MS dataset as we
observed no negative effect of including the two additional radar
channels. Including these bands makes our pre-trained weights of
METEOR applicable to radar downstream tasks, even though we
did not show experiments based on radar data in this work. From
the 13 optical channels, various satellite sensors, such as Planet-
Scope or Worldview, can be used for downstream tasks, as we
demonstrate in the experiments. Pre-training METEOR with
other channels is possible, as we did during development with
only Sentinel-2 or RGB bands variants. the meta-model archi-
tecture. This meta-model is pre-trained on tasks of 16 images
with four randomly selected land use and land cover classes, each
task from one geographic area in the Sen12MS dataset5. We split
the task images into a train and test partition with eight images
each. This configuration corresponds to a 2-shot 4-way classifi-
cation setting with two images per class. Note that we modify this
multi-class task to binary one-versus-all classification by selecting
one class randomly as a target. The task`s training objective is to
learn the representation of this selected class from the two images
against the other six negative examples (containing two examples
of the three other classes).

Model-agnostic meta-learning. To obtain the meta-model, we
use the model-agnostic meta-learning (MAML)23 algorithm that
optimizes the following objective:

ð1Þ

ð2Þ

where a task-model ϕτ is initialized by the meta-model θ and
iteratively fine-tuned with k ≤ K steps based on gradients from a
loss of training samples ∇Ltrain in an inner loop. The constant α
denotes the inner learning rate. In the outer loop, the meta-model
parameters θ are updated by minimizing the test loss Ltestτ over a
batch of tasks Eτ�pðτÞ with the fine-tuned parameters ϕτ,K. These
fine-tuned parameters are a function of the initialization θ. This
makes updating the meta-model parameters with second-order
gradients (outer gradients through the inner loop gradients)
possible. Over several thousand iterations, this yields a meta-
model that is explicitly learned to learn differences between land
cover categories from different geographic areas. In this work, we

pre-trained the meta-model with the standard second-order
MAML algorithm23, as it achieved best results on the realistic
use-cases in comparison to variants, such as SparseMAML24 or
tasknorm-I25, as shown in Table 1.

Task-model implementation and fine-tuning on
downstream tasks. The METEOR task-model tuning has three
requirements: (i) it must have the same weight dimensions as the
meta-model so that it can be initialized with the weights of the
meta-model; (ii) it must consider a problem with more than one
class; and (iii) it must apply to downstream tasks where the input
channels involved are a subset of those of the meta-model.

● We fulfill the first and second requirements by implement-
ing the task-model as an ensemble of multiple one-versus-
all classifiers, each initialized with the parameters of the
meta-model (first requirement), as shown in Supplemen-
tary Fig. 1b). Each classifier is responsible for predicting a
single class when multiple classes are present in the task
(second requirement). When fine-tuning this task-model
on a downstream task with n classes, each classifier
minimizes a binary cross-entropy loss with stochastic
gradient descent concerning one positive class and n− 1
negative classes. Given a new input sample for prediction
(second row of Supplementary Fig. 1b), each ensemble
member in the task-model predicts a score associated with
its respective class. Classification probabilities for each class
can be retrieved by either sigmoid-normalizing the
prediction scores of each member separately or by
combining the prediction scores by softmax. We used
softmax normalization for all experiments except for the
qualitative analysis in Fig. 4. Here, we obtained better
occlusion sensitivity maps with sigmoid normalization, as
the presence of one class did not influence the prediction of
another.

● To address the third requirement, we select a subset of the
learned convolutional filter banks in the first convolution in
the input block of the ResNet-12 neural network, as shown
schematically in Supplementary Fig. 1c. The meta-model’s
first layer normally convolves a 15-dimensional input
image with 15 convolutional filter banks, as shown in the
top row. When a downstream task provides data with, for
instance, three RGB spectral bands (bottom row), we only
copy the filter banks responsible for the RGB channels from
the meta-model to initialize the task-model. This transfer is
meaningful as long as the requested spectral bands form a
subset of the spectral bands of the meta-model. In terms of
downstream tasks with images of different spatial resolu-
tions, no model modifications are necessary, as ResNets
ingest images of different sizes natively.

Task-model modification for segmentation. Some downstream
tasks, such as marine debris segmentation (Fig. 6), require the
model to output segmentation maps rather than a single classi-
fication probability. For pixel-wise segmentation, the task-model
needs to be adapted structurally, as shown in Supplementary
Fig. 1a). We modify the network without changing the weight
dimensions by removing the global average pooling in the
penultimate layer and replacing the final linear layer with 1 × 1
convolutions. These convolutions are equivalent to linear layers
applied to each feature-pixel separately and, thus, use identical
weight dimensions. This modification yields a 9 px × 9 px seg-
mentation map for a 64 px × 64 px image, which is then upscaled
via bicubic interpolation to the original resolution.

ARTICLE COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-023-01146-0

10 COMMUNICATIONS EARTH & ENVIRONMENT |            (2024) 5:37 | https://doi.org/10.1038/s43247-023-01146-0 | www.nature.com/commsenv

www.nature.com/commsenv


Training details. During pre-training of the meta-model, we
train in iterations containing batches of 16 tasks and aggregate
metrics over cycles of 200 training iterations. We employ Adam55

as an outer optimizer and set its learning rate to 0.001, which is
further decreased by a factor of 0.1 if the validation loss has not
decreased over 20 cycles. The training is stopped when the vali-
dation loss did not decrease over 40 cycles or at 40000 training
iterations. The gradient update is done with standard second-
order MAML in a single gradient step. The inner learning rate
(i.e., step size α) is set 0.32 experimentally and the model weights
are updated with stochastic gradient descent. We experimented
with two gradient steps at the cost of a smaller batch size but
found training on larger batches with a single gradient step to
yield better performances. Fine-tuning on downstream tasks is
realized through regular stochastic gradient descent with a step
size between 0.32 and 0.4 and 20–60 gradient steps. We find that
a comparatively wide range of step sizes and the number of
gradient steps led to similar solutions in the classification
experiments. The loss function is binary cross-entropy for both
pre-training and fine-tuning on all downstream tasks. For the
qualitative segmentation experiment in Fig. 6, we fine-tuned
METEOR with a cross-entropy objective on each pixel. For the
change detection experiment in Fig. 5, we define two classes, “pre-
event" and “post-event", and similarly use cross-entropy.

The pre-training of the meta-model was performed on two
NVIDIA V100 GPUs within a computational SLURM cluster
within 48 h. The estimated carbon footprint for pre-training one
meta-model was 5 kg/eCO2. Fine-tuning and prediction on the
seven different DFC2020 regions took 4 min on a NVIDIA
GeForce RTX 3090. The fine-tuning and prediction of 1-shot
marine debris images took 10 s on a workstation with 32 CPU
cores and 120GB RAM and 2min 10 s on a MacBook Pro (2020)
with Apple M1 CPU and 16GB RAM.

Comparison models. We compared METEOR across applica-
tions with prototypical networks and self-supervised contrastive
learning algorithms in Tables 2 and 3.

Prototypical Networks (ProtoNets)17 are a metric-based few-
shot learning approach where a deep neural network (ProtoNet)
is trained with the identical source tasks, as METEOR. In
ProtoNets, a deep feature extractor maps all images of one task
into a common feature space. The feature representations of the
training images are then averaged into prototype vectors. The test
images are associated with the class of the nearest prototype in
Euclidean distance. The feature extractor is iteratively optimized
via gradient descent to minimize the classification error of the test
images over a batch of few-shot tasks. We implemented the
prototypical network with a ResNet-18 model and trained it with
a learning rate of 0.001 until the convergence of the validation
error in the Sen12MS dataset.

Self-supervised contrastive learning provides an alternative way
to obtain feature extractor representations. In contrast to
prototypical networks, the optimization objective is to minimize
the error on a hand-defined pretext task designed not to require
annotations and to mimic some characteristic of interest of the
data we want the model to be robust against. Usually, these
methods are adapted to new downstream problems by freezing
the feature extractor and fine-tuning a relatively small classifier
network that can be a single linear layer or a multi-layer
perceptron. However, we found in initial experiments (in
Supplementary Fig. 2), where we compared different adaptation
strategies, that this fine-tuning with a dedicated classifier network
does not lead to accurate results for few-shot problems with less
than 50 shots. We, therefore, decided to follow the strategy of
prototypical networks and perform nearest neighbor classification

with Euclidean distance in the feature space directly to obtain the
results in Tables 2 and 3.

Specifically, we compared to the MoCo-trained ResNet-50
from SSL4EO34 and the ResNet-50 from SSLTRANSRS16 which
were pre-trained on full multi-spectral data. In Supplementary
Table 1, we compared to pre-trained variants provided in these
code bases and choose models that achieved the best accuracy on
the diverse downstream problems of Table 3. Furthermore, we
compared METEOR to seasonal contrast (SeCo)35, which uses
Momentum Contrast v2 (MoCo v2)44,56 on RGB representations
of unlabeled Sentinel-2 images of the same scene at different
dates, therefore learning robustness to image seasonality. We
further use the weights of SWAV36 and DINO37, which are pre-
trained on natural images and equally employ a ResNet-50. We
also compare to a supervised BASELINE trained in a supervised
way on ten classes of the Sen12MS dataset. We used a learning
rate of 10−3 and a weight decay of 10−6 and take the model that
achieved the best validation accuracy over 50 epochs. We trained
a ResNet-12 (same architecture of METEOR), ResNet-18, and
ResNet-50, and use the ResNet-18 in the comparison of Tables 2
and 3, as it achieves the best results across the different backbones
(Supplementary Table 1). MOSAIKS29 proposed a featurization
strategy based on autocorrelation features from Random Kitchen
Sinks57 extracted by a small neural network30. As the most
applicable featurization strategy of MOSAIKS is ambiguous, we
test different configurations (Gaussian and Laplacian random
features, empirical global features, and empirical local features
and local features-supervised), as described further in the
Supplementary Notes 2. We compared all variants to METEOR
in Supplementary Table 1 where the “empirical local features"
strategy led to the best accuracies across all problems which we
use as MOSAIKS implementation in Tables 2 and 3.

Datasets. Nine datasets have been used throughout the
experiments.

The Sentinel-12 Multi-Spectral (Sen12MS)5 dataset is used for
pre-training the meta-model. It contains Sentinel-1 and Sentinel-
2 images with associated land cover labels in a coarse
segmentation map in 125 globally distributed geographic regions.
We use Sen12MS for classification by associating the image with
the majority class observed in the patch39. The original dataset
contains overlapping images of 256 px × 256 px. Following prior
work28, we remove the overlap in the images, which yields images
of 128 px × 128 px in size. Nine different land use and land cover
categories are present in this dataset that follow a simplified5,39

International Geosphere Biosphere Program (IGBP)58 classifica-
tion scheme. These classes contain the general land cover
categories forests, shrubland, savanna, grassland, wetlands, crop-
lands, urban/built-up, snow/ice, barren, water. these classes
throughout the globe is substantially different from each other.
We split the data into distinct geographical regions for training
(75), validation (25), and test (25) to prevent geographical
autocorrelation and the potential positive biases of the training set
leaking into the test regions. The test regions are used after
training to evaluate final accuracy on Sen12MS tasks, as reported
in Table 1. The meta-model is trained on tasks from the 75
training regions, while tasks from the validation regions are used
for parameter tuning and early stopping of the pre-training
process.

The public Data Fusion Contest 2020 (DFC2020) dataset33 was
designed to mirror Sen12MS with the same IGBP labels on seven
different geographic regions. The annotations were semi-
automatically refined and contain less label noise compared to
Sen12MS, which makes these regions most suitable for qualitative
and quantitative evaluation. Each DFC2020 region is partitioned
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into non-overlapping tiles of 256 px × 256 px and segmentation
labels are provided alongside the optical Sentinel-2 and radar
Sentinel-1 images. As for the previous dataset, we select the most
frequent land cover in the segmentation map as a classification
label for each tile following Schmitt and Wu39. The accuracy of all
seven regions is used in Tables 1 and 2. We selected the Kippa-
Ring region for the qualitative result in Fig. 2 and also compared
it with other tasks in Table 3. In general, METEOR can achieve
high performance on land cover classification problems (as in
DFC2020 or Sen12MS), while accommodating the regional
differences in the representation of land covers, as croplands or
forests, which show a high intra-class variability, both spectrally
and geographically. Concretely, this can increase the accuracy of
land cover classification in general by fine-tuning many region-
specific classifiers.

The EuroSAT benchmark dataset contains multi-spectral
Sentinel-2 images of 64 px × 64 px with 13 spectral bands. It
features nine land use and land cover classes: annual crop,
herbaceous vegetation, industrial, permanent crop, river, forest,
highway, pasture, residential, sea lake. The dataset is artificially
balanced and contains 2500–3000 images per class. In this case,
METEOR can learn the specific representation of land cover for
southern Germany.

The NWPU-RESISC45 benchmark41 is a broadly used bench-
mark dataset that contains RGB images of 256 px × 256 px size at
different resolutions of 45 diverse classes. disciplines. Each class is
represented by 700 images. To build an urban scene classification
problem, we specifically select the classes commercial, residential,
dense-, medium-, and sparse residential to create a downstream
task for urban scene classification. We compare models on this
dataset in Table 3 and show results qualitatively in Fig. 4. We use
this dataset to test whether METEOR can learn more fine-grained
distinctions of different urban scenes, even if it was pre-trained
only on general land cover classes from Sen12MS.

The Floating Marine Objects dataset6 contains Sentinel-2
images with hand-annotated labels of 26 coastal regions across
the globe. Marine debris exhibits a strong heterogeneity6; hence,
learning a single representation for marine debris is difficult due
to different compositions of materials, different water transpar-
ency due to sediments, and different atmospheric conditions that
vary between satellite scenes. Automated atmospheric correction
cannot completely remove these latter effects7. We select images
from the coastal region near Accra, Ghana, where liquid
pollutants were visually detected and annotated on a Sentinel-2
scene on October 31, 2018. We use this dataset for segmentation
in Fig. 6. In Table 3, we use this data in a binary classification
setting where images of floating objects are assigned a positive
class, and randomly sampled images from the entire Sentinel-2
scene are used as negatives. We use this dataset to test the limits
of METEOR in distinguishing details within water scenes, even
though the meta-model was pre-trained on generic Sen12MS land
cover classes. Approaching this application field with meta-
learning is particularly promising, as hardly any label data exists
for marine debris detection. Moreover, the heterogeneity of the
types of marine debris further complicates training a single
dataset. Hence, METEOR can be fine-tuned in multiple debris
and region-specific task-models calibrated for the specific area
under study.

DENETHOR42 is a crop type mapping dataset that provides
PlanetScope and Sentinel-2 images of the year 2018 from nine
crop categories. In Table 3, we use a single PlanetScope image
from May 8, 2018, and obtain a cutout of the entire scene around
each field parcel. This cutout is reshaped to a rectangular image of
128 px × 128 px. We select only field parcels that are larger than
30,000 m2 to maintain a certain homogeneity after rescaling. We
also select three classes wheat, corn, and meadow to obtain an

annotated image dataset of 640 images, as we found that the
classification of all crop types using a single image was too
complex for all models with only few training samples. Here, the
regional variability of croplands and the high temporal variability
of growing crops makes it similarly difficult to construct a
representative dataset. METEOR fine-tuned to few examples of
cropland in one particular area and one particular growing phase
can provide accurate predictions with little annotation effort.

AnthroProtect43 was gathered to measure the presence of
human influence from Sentinel-2 imagery in Fennoscandia. It
consists of Sentinel-2 images of areas that are designated as
naturally protected areas and are, thus, minimally influenced by
humans. These images are classified against Sentinel-2 scenes of
non-protected areas within the same countries. This dataset
contains 990 annotated images and results are reported in
Table 3. This dataset tests the applicability of METEOR to
distinguish fine-grained differences between human-influenced
and natural (protected) areas.

The datasets for the qualitative deforestation and change
detection problems have been created by the authors, and details
are provided in Figs. 3 and 5, respectively. They will be available
in the provided repository. Fine-tuning METEOR on deforesta-
tion detection with few training examples can support remote
sensing and environmental research in quickly exploring and
identifying newly deforested areas with few training examples.
These deforestation events are often time-critical, especially when
emerging in novel areas that have not been mapped before.
Hence, fine-tuning a deep learning model with a few training
examples can accelerate the identification of new emerging
deforestation hot spots. Similarly, the change detection applica-
tion in Beirut highlights the need to quickly identify affected areas
in natural disaster cases from a few training examples.

Data availability
The self-created datasets for change detection are acquirable from the provided
repository https://github.com/marccoru/meteor/blob/master/doc/beirutdata.md, where
we provide a direct download link for the image data. The Sentinel-2 images were
obtained through Google Earth Engine59 and are free of charge in a Creative Commons
CC BY-SA 3.0 IGO licence. The PlanetScope data for the deforestation use-case were
obtained through the PlanetScope Education and Research Plan. We provide a file in the
repository under https://github.com/marccoru/meteor/blob/master/doc/
deforestationdata.md that lists the PlanetScope explorer query and the image ids used in
this study. To acquire the actual images, one must re-download either through their own
PlanetScope Education and Research Plan or by purchasing the data from PlanetScope
directly. All other datasets (Sen12MS5, EuroSAT40, NWPU-RESISC4541, DFC202033,
Floating Marine Objects6, Denethor42, AnthroProtect43) are publically available from the
respective authors. We provide an overview file with download links under https://
github.com/marccoru/meteor/blob/master/doc/public_datasets.md.

Code availability
The source code, model weights of the meta-model are available at https://github.com/
marccoru/meteor alongside scripts to reproduce the experiments.
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