001     1025767
005     20250203103307.0
024 7 _ |a 10.52825/solarpaces.v1i.642
|2 doi
024 7 _ |a 10.34734/FZJ-2024-03135
|2 datacite_doi
024 7 _ |a WOS:001324829700026
|2 WOS
037 _ _ |a FZJ-2024-03135
100 1 _ |a Pargmann, Max
|0 0000-0002-4705-6285
|b 0
111 2 _ |a 28th International Conference on Concentrating Solar Power and Chemical Energy Systemsf CSP and Hybridized Systems
|g SolarPACES 2022
|c Albuquerque
|d 2022-09-27 - 2022-09-30
|w USA
245 _ _ |a In Situ Enhancement of Heliostat Calibration Using Differentiable Ray Tracing and Artificial Intelligence
260 _ _ |c 2023
300 _ _ |a 10 p.
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1714546206_354
|2 PUB:(DE-HGF)
520 _ _ |a The camera target method is the most commonly used calibration method for heliostats at solar tower power plants to minimize their sun tracking errors. In this method, individual heliostats are moved to a white surface and their deviation from the targeted position is measured. A regression is used to calculate errors in a geometry model from the tabular data obtained in this way. For modern aim point strategies, or simply heliostats in the rearmost end of the field, extremely high accuracies are needed, which can only be achieved by many degrees of freedom in the geometry model. The problem here is that the camera target method produces only a very small data set per heliostat, which limits the number of free variables and thus the accuracy. In this work, we extend existing ray tracing methods for solar towers with a differentiable description, allowing for the first time a data-driven optimization of object parameters within the ray tracing environment. Therefore, the heliostat calibration can take place directly within the ray tracing environment. Thus, the image data acquired during the measurement can be processed directly and more information about the orientation of the heliostat can be obtained. Within a simple example we show the advantages of the method, which converges faster and corrects errors that could not be considered before. Without any disadvantages or additional costs, the state-of-the-art calibration method can be improved.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Ebert, Jan
|0 P:(DE-Juel1)187002
|b 1
700 1 _ |a Kesselheim, Stefan
|0 P:(DE-Juel1)185654
|b 2
700 1 _ |a Maldonado Quinto, Daniel
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Pitz-Paal, Robert
|0 0000-0002-3542-3391
|b 4
773 _ _ |a 10.52825/solarpaces.v1i.642
|y 2023
|g Vol. 1
|v 1
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1025767/files/642_Pargmann_et_al.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1025767/files/642_Pargmann_et_al.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1025767/files/642_Pargmann_et_al.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1025767/files/642_Pargmann_et_al.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1025767/files/642_Pargmann_et_al.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1025767
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)187002
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)185654
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2024
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21