001     1025884
005     20250203103358.0
024 7 _ |a 10.1016/j.brainresbull.2023.110744
|2 doi
024 7 _ |a 0361-9230
|2 ISSN
024 7 _ |a 1873-2747
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-03169
|2 datacite_doi
024 7 _ |a 37591404
|2 pmid
024 7 _ |a WOS:001063361900001
|2 WOS
037 _ _ |a FZJ-2024-03169
082 _ _ |a 150
100 1 _ |a Li, Fali
|0 0000-0002-2450-4591
|b 0
245 _ _ |a Disease-specific resting-state EEG network variations in schizophrenia revealed by the contrastive machine learning
260 _ _ |a Amsterdam [u.a.]
|c 2023
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1714729816_30347
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Given a multitude of genetic and environmental factors, when investigating the variability in schizophrenia (SCZ) and the first-degree relatives (R-SCZ), latent disease-specific variation is usually hidden. To reliably investigate the mechanism underlying the brain deficits from the aspect of functional networks, we newly iterated a framework of contrastive variational autoencoders (cVAEs) applied in the contrasts among three groups, to disentangle the latent resting-state network patterns specified for the SCZ and R-SCZ. We demonstrated that the comparison in reconstructed resting-state networks among SCZ, R-SCZ, and healthy controls (HC) revealed network distortions of the inner-frontal hypoconnectivity and frontal-occipital hyperconnectivity, while the original ones illustrated no differences. And only the classification by adopting the reconstructed network metrics achieved satisfying performances, as the highest accuracy of 96.80% ± 2.87%, along with the precision of 95.05% ± 4.28%, recall of 98.18% ± 3.83%, and F1-score of 96.51% ± 2.83%, was obtained. These findings consistently verified the validity of the newly proposed framework for the contrasts among the three groups and provided related resting-state network evidence for illustrating the pathological mechanism underlying the brain deficits in SCZ, as well as facilitating the diagnosis of SCZ.
536 _ _ |a 5251 - Multilevel Brain Organization and Variability (POF4-525)
|0 G:(DE-HGF)POF4-5251
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Wang, Guangying
|b 1
700 1 _ |a Jiang, Lin
|b 2
700 1 _ |a Yao, Dezhong
|b 3
700 1 _ |a Xu, Peng
|b 4
700 1 _ |a Ma, Xuntai
|b 5
700 1 _ |a Dong, Debo
|0 P:(DE-Juel1)190904
|b 6
|u fzj
700 1 _ |a He, Baoming
|0 P:(DE-HGF)0
|b 7
|e Corresponding author
773 _ _ |a 10.1016/j.brainresbull.2023.110744
|g Vol. 202, p. 110744 -
|0 PERI:(DE-600)2004068-4
|p 110744 -
|t Brain research bulletin
|v 202
|y 2023
|x 0361-9230
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1025884/files/1-s2.0-S0361923023001697-main.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1025884/files/1-s2.0-S0361923023001697-main.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1025884/files/1-s2.0-S0361923023001697-main.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1025884/files/1-s2.0-S0361923023001697-main.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1025884/files/1-s2.0-S0361923023001697-main.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1025884
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)190904
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5251
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2023-10-22
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BRAIN RES BULL : 2022
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-10-22
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-06-13T12:11:42Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-06-13T12:11:42Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-22
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-10-22
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-22
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-22
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-22
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-10-22
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-22
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-06-13T12:11:42Z
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21