Hauptseite > Publikationsdatenbank > Disease-specific resting-state EEG network variations in schizophrenia revealed by the contrastive machine learning > print |
001 | 1025884 | ||
005 | 20250203103358.0 | ||
024 | 7 | _ | |a 10.1016/j.brainresbull.2023.110744 |2 doi |
024 | 7 | _ | |a 0361-9230 |2 ISSN |
024 | 7 | _ | |a 1873-2747 |2 ISSN |
024 | 7 | _ | |a 10.34734/FZJ-2024-03169 |2 datacite_doi |
024 | 7 | _ | |a 37591404 |2 pmid |
024 | 7 | _ | |a WOS:001063361900001 |2 WOS |
037 | _ | _ | |a FZJ-2024-03169 |
082 | _ | _ | |a 150 |
100 | 1 | _ | |a Li, Fali |0 0000-0002-2450-4591 |b 0 |
245 | _ | _ | |a Disease-specific resting-state EEG network variations in schizophrenia revealed by the contrastive machine learning |
260 | _ | _ | |a Amsterdam [u.a.] |c 2023 |b Elsevier Science |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1714729816_30347 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Given a multitude of genetic and environmental factors, when investigating the variability in schizophrenia (SCZ) and the first-degree relatives (R-SCZ), latent disease-specific variation is usually hidden. To reliably investigate the mechanism underlying the brain deficits from the aspect of functional networks, we newly iterated a framework of contrastive variational autoencoders (cVAEs) applied in the contrasts among three groups, to disentangle the latent resting-state network patterns specified for the SCZ and R-SCZ. We demonstrated that the comparison in reconstructed resting-state networks among SCZ, R-SCZ, and healthy controls (HC) revealed network distortions of the inner-frontal hypoconnectivity and frontal-occipital hyperconnectivity, while the original ones illustrated no differences. And only the classification by adopting the reconstructed network metrics achieved satisfying performances, as the highest accuracy of 96.80% ± 2.87%, along with the precision of 95.05% ± 4.28%, recall of 98.18% ± 3.83%, and F1-score of 96.51% ± 2.83%, was obtained. These findings consistently verified the validity of the newly proposed framework for the contrasts among the three groups and provided related resting-state network evidence for illustrating the pathological mechanism underlying the brain deficits in SCZ, as well as facilitating the diagnosis of SCZ. |
536 | _ | _ | |a 5251 - Multilevel Brain Organization and Variability (POF4-525) |0 G:(DE-HGF)POF4-5251 |c POF4-525 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Wang, Guangying |b 1 |
700 | 1 | _ | |a Jiang, Lin |b 2 |
700 | 1 | _ | |a Yao, Dezhong |b 3 |
700 | 1 | _ | |a Xu, Peng |b 4 |
700 | 1 | _ | |a Ma, Xuntai |b 5 |
700 | 1 | _ | |a Dong, Debo |0 P:(DE-Juel1)190904 |b 6 |u fzj |
700 | 1 | _ | |a He, Baoming |0 P:(DE-HGF)0 |b 7 |e Corresponding author |
773 | _ | _ | |a 10.1016/j.brainresbull.2023.110744 |g Vol. 202, p. 110744 - |0 PERI:(DE-600)2004068-4 |p 110744 - |t Brain research bulletin |v 202 |y 2023 |x 0361-9230 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1025884/files/1-s2.0-S0361923023001697-main.pdf |
856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/1025884/files/1-s2.0-S0361923023001697-main.gif?subformat=icon |
856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/1025884/files/1-s2.0-S0361923023001697-main.jpg?subformat=icon-1440 |
856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/1025884/files/1-s2.0-S0361923023001697-main.jpg?subformat=icon-180 |
856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/1025884/files/1-s2.0-S0361923023001697-main.jpg?subformat=icon-640 |
909 | C | O | |o oai:juser.fz-juelich.de:1025884 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)190904 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-525 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Decoding Brain Organization and Dysfunction |9 G:(DE-HGF)POF4-5251 |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2023-10-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2023-10-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2023-10-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2023-10-22 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b BRAIN RES BULL : 2022 |d 2023-10-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2023-10-22 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2023-06-13T12:11:42Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2023-06-13T12:11:42Z |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-22 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-10-22 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2023-10-22 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2023-10-22 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-10-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-22 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2023-10-22 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-22 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2023-06-13T12:11:42Z |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)INM-7-20090406 |k INM-7 |l Gehirn & Verhalten |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)INM-7-20090406 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|