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ARTICLE INFO ABSTRACT
Keywords: Given a multitude of genetic and environmental factors, when investigating the variability in schizophrenia
Schizophrenia (SCZ) and the first-degree relatives (R-SCZ), latent disease-specific variation is usually hidden. To reliably

Contrastive variational autoencoders
Disease-specific network patterns
Network disconnectivity

investigate the mechanism underlying the brain deficits from the aspect of functional networks, we newly
iterated a framework of contrastive variational autoencoders (cVAEs) applied in the contrasts among three
groups, to disentangle the latent resting-state network patterns specified for the SCZ and R-SCZ. We demon-
strated that the comparison in reconstructed resting-state networks among SCZ, R-SCZ, and healthy controls (HC)
revealed network distortions of the inner-frontal hypoconnectivity and frontal-occipital hyperconnectivity, while
the original ones illustrated no differences. And only the classification by adopting the reconstructed network
metrics achieved satisfying performances, as the highest accuracy of 96.80% =+ 2.87%, along with the precision
of 95.05% =+ 4.28%, recall of 98.18% =+ 3.83%, and F1-score of 96.51% + 2.83%, was obtained. These findings
consistently verified the validity of the newly proposed framework for the contrasts among the three groups and
provided related resting-state network evidence for illustrating the pathological mechanism underlying the brain
deficits in SCZ, as well as facilitating the diagnosis of SCZ.

1. Introduction of unknown etiology and has been linked to cognitive disturbances in
recognizing, processing, and responding to novel stimuli (Insel, 2010;

As a widely accepted lifetime neuropsychiatric syndrome, schizo- Murillo-Garcia et al., 2022). Compared to the healthy populations,
phrenia (SCZ) is usually characterized by multiple symptoms and signs previous studies have greatly revealed deficits in multiple brain regions
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of SCZ patients, such as the anterior cingulate cortex and prefrontal
cortex (Li et al., 2018; Mouchlianitis et al., 2015), as well as their
inter-regional communications, which is commonly termed as "dis-
connectivity hypothesis" (Stephan et al., 2009).

As illustrated previously, the resting-state activity consumes the
majority of the brain energy (exceeding 95%) (Raichle, 2010), thus
spontaneous activity is believed to reflect the potential of the brain to
efficiently process information (Jiang et al., 2023b; Si et al., 2023; Zhang
et al., 2016), as well as offer abundant accounts for elaborating the
illness-induced distortions (Feng et al., 2023; Yang et al., 2023).
Particularly, multiple spatially distributed but functionally linked re-
gions (Li et al., 2023; Yi et al., 2022) in the brain coupled with each
other, forming a larger-scale complex network (Bassett and Sporns,
2017; Jiang et al., 2023a; Sporns, 2022). Concerning the resting-state
networks, over the past decades, plenty of resting-state studies have
provided a bulk of evidence for explaining the intrinsic brain abnor-
malities in SCZ (da Cruz et al., 2020; Jiang et al., 2022; Li et al., 2022;
Yang et al., 2015). For example, when exploring the distortions in
functional subsystems in SCZ, both decreased executive control and
dorsal attention networks and the attenuated integration between the
executive control and default mode networks were identified (Wood-
ward et al., 2011).

However, from a macroscopic perspective, the human brain is sha-
ped by a multitude of genetic and environmental factors, the disease-
specific variations are thus difficult to be identified, due to the mass of
multiple irrelevant factors. On one hand, neurophysiological biomarkers
of psychosis risk have been previously investigated, which aims to
explain how related pathological risk is conferred (Wang et al., 2022).
And a portion of the identified biomarkers has been indeed reported to
be closely associated with increased psychosis risk, as well as help
predict its transition (Lepock et al., 2018). For example, significant
volume reductions in left anterior cornu ammonis were found for the
relatives, which deviated from the healthy controls (HC), while a
significantly larger right posterior subiculum was reported when
compared with first-episode SCZ (Choi et al., 2022). In addition, it has
also been clinically proven that SCZ and their first-degree relatives
(R-SCZ) carry similar disease-specific genes (Sullivan et al., 2003), and
previous studies had further reported a continuous increase of the ge-
netic SCZ risk variation burden from unaffected family members to SCZ
patients (Ahangari et al., 2022). However, in related studies, apart from
some obvious variations uncovered and reported, in most cases, it is
difficult for us to clearly depict the variability existing between patients
and their relatives. Hence, recent studies have proposed a framework
defining the contrastive variational autoencoders (cVAEs) to disentangle
autism-specific neuroanatomical variation from typical developing
participants (Aglinskas et al., 2022). In this work, they successfully
extracted the autism-specific variation and reported close associations
between autism-specific variation and individual symptoms. Herein, we
mainly tried to disentangle the disease-specific variations from the
shared background across the SCZ, R-SCZ, and HC, to uncover the pa-
tient- and relative-specific restings-state network structures.

Overall, SCZ has been widely clarified to be attributed to brain
network disconnectivity (Jiang et al., 2022; Stephan et al., 2009), and
related neurophysiological markers, also referring as endophenotypes,
have been reported to be impaired in the R-SCZ (Wang et al., 2022), as
well, which can help decode how related genetic risk is conferred.
Herein, given that recent studies cannot always efficiently capture the
disease-specific variations among varying populations, we thus
concentrated on this latent issue and attempted to disentangle the latent
disease-specific network disconnectivity from what is common among
the three groups. And further, a promoted aim of our current study was
to resolve if the reconstructed networks could provide new evidence
elaborating the network distortions in SCZ, as well as provide possible
biomarkers for the clinical diagnosis of SCZ. Therefore, based on the
originally constructed resting-state electroencephalogram (EEG) net-
works of all participants, a new framework of cVAEs was iterated to
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accomplish the decomposition of functional networks among the three
groups. In the meantime, the resting-state activity has been widely
acknowledged to provide possible biomarkers for recognizing SCZ (Li
et al.,, 2022; Li et al., 2019; Nunez et al., 2017), for instance, a high
accuracy of approximately 90% was achieved using two rest EEG
network measurements to classify amnestic mild cognitive impairment
from normal cognition (Xu et al., 2014b). Herein, we would further
reveal whether these network variations disentangled could help facil-
itate the diagnosis of SCZ.

2. Results

Herein, we primarily concentrated on the resting-state networks to
explore the disease-specific deficits in the brain of SCZ. For all partici-
pants, after data preprocessing, the PLV networks were first constructed
and accordingly compared among the three groups, however, no dif-
ferences were reported (p > 0.05, Bonferroni corrected). Hence, to
further capture the differences in resting-state networks among these
groups, by inputting the original networks into the cVAEs, the latent
patient- and relative-specific network variations were disentangled,
which was similar to the concept of contrastive principal component
analysis. Thereafter, for all participants, the characteristic matrices were
extracted, accordingly reconstructing the resting-state networks. Fig. 1
reports the comparison between original and reconstructed resting-state
networks, illustrating no significant differences (p > 0.05, Bonferroni
corrected), which confirmed the reliability of the network
reconstruction.

Given the original networks failed in mining between-group differ-
ences (HC vs. R-SCZ, HC vs. SCZ, and R-SCZ vs. SCZ), we then tried if the
reconstructed networks could work. Concretely, based on the recon-
structed networks, topological differences among the three groups were
explored, which did capture potential variability across groups. Just as
displayed in Fig. 2 (p < 0.05, Bonferroni corrected), when comparing
both SCZ and R-SCZ with HC, we consistently found decreased short-
range inner-frontal connectivity, as well as increased long-range fron-
tal-occipital connectivity for both groups. And when comparing the R-
SCZ and SCZ, both weaker bilateral temporal connectivity and stronger
long-rang frontal-parietal connectivity were uncovered for SCZ. Con-
cerning the resting-state network properties, for both original and
reconstructed networks, four network properties, e.g., clustering co-
efficients (CC), characteristic path length (CPL), global efficiency (GE),
and local efficiency (LE), showed no significant differences among the
three groups (p > 0.05, Bonferroni corrected).

In recent decades, achieving the accurate recognition of SCZ always
draws huge attention. Our following analyses then tried if the original
and reconstructed networks could help facilitate the classification of
SCZ. On one hand, based on the original networks, both the network
topologies and properties were applied to accomplish the classification,
and as listed in Table 1, we only acquired an accuracy of 31.56%
+ 7.51% for network properties and of 35.38% =+ 9.14% for network
topologies, which was obviously lower than expected. On the other
hand, both topologies and properties of the reconstructed networks were
used, as well. In Table 1, we did find that when reconstructed network
topologies were used, the highest accuracy of 96.80% =+ 2.87% was
acquired, along with the precision of 95.05% + 4.28%, recall of 98.18%
+ 3.83%, and Fl-score of 96.51% =+ 2.83%. Whereas, the network
properties still acquired unsatisfying performance, only an accuracy of
34.75% + 6.30% was obtained.

Apart from the classification among these three groups, we further
validated if the reconstructed network topologies could also succeed in
recognizing SCZ from their relatives. Thus, following a similar cross-
validation strategy, the classification of SCZ vs. R-SCZ was accom-
plished. Herein, we acquired an accuracy of 91.40% + 9.63%, as well as
a precision of 92.86% + 7.09%, recall of 92.29% + 8.28%, and F1-score
of 91.16% =+ 9.80%, which did clarify the validity of the reconstructed
network topologies in facilitating the recognition of SCZ.
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Fig. 1. Statistics between the original and reconstructed resting-state networks based on the cVAEs for the HC, R-SCZ, and SCZ groups (p > 0.05, Bonferroni cor-

rected), respectively.
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Fig. 2. Comparison of the reconstructed resting-state networks among the three groups. In each subfigure, the blue-solid lines denote the stronger edges in variable 1
(HC, R-SCZ, and HC, respectively) than that in variable 2 (SCZ, SCZ, and R-SCZ, respectively), while the red-solid lines denote the opposite.

Table 1
Classification performances based on the resting-state network metrics.

Original resting-state networks Reconstructed resting-state

networks

Properties Topologies Properties Topologies
Accuracy  31.56% 35.38% 34.75% 96.80%

+7.51% +9.14% + 6.30% +2.87%
Precision  14.02% 41.56% 11.58% 95.05%

+ 8.15% +10.16% +2.10% + 4.28%
Recall 33.07% 5015% 33.33% 98.18%

+2.31% +19.73% +0.01% + 3.83%
Fl-score 17.18% 44.66% 17.08% 96.51%

+ 4.95% + 13.95% +2.37% +2.83%

Moreover, given deficits in P300 amplitudes are regarded as an
endophenotype of SCZ (Chun et al., 2013; Jeon and Polich, 2003), it has
been widely applied to discriminate SCZ from HC (Li et al., 2019; Tur-
etsky et al., 2015). Hence, the P300 amplitudes were also considered in
achieving the classification of SCZ. In this study, considering not all
participants had both resting-state and task designs, we thus only
brought participants who had both resting-state and task EEG datasets
into the subsequent analyses, which consisted of 74 HCs, 69 SCZs, and
94 R-SCZs. Thereafter, for these participants, based on their

trial-averaged ERP signals, the P300 amplitudes were extracted within a
time duration of [300, 500] ms (0 ms denotes the target onsets). And we
statistically investigated the potential differences in P300 amplitudes.
Just as displayed in Fig. 3, the P300 amplitudes of SCZ were the smallest
(vs. R-SCZ: t = —2.11, p = 0.04; vs. HC: t = —4.51, p < 0.00), and the
R-SCZ also showed the smaller P300 amplitudes (t = —2.52, p = 0.01),
when compared to that of HC.

Eventually, the P300 amplitudes were regarded as discriminative
features to accomplish the classification. The results showed that the
P300 amplitudes only acquired an accuracy of 38.86% + 9.31%, pre-
cision of 20.76% =+ 13.03%, recall of 36.65% =+ 4.06%, and F1-score of
23.87% + 10.08%, which is still lower than expected. On the contrary,
the network topologies still acquired the highest accuracy of 94.93%
+ 4.82%, along with a precision of 95.28% =+ 8.05%, recall of 93.81%
+ 11.24%, and F1-score of 93.88% + 6.57%. These consistently vali-
dated again that the reconstructed resting-state network topologies were
helpful and would provide potential biomarkers for the diagnosis of SCZ.
Table 2.

3. Discussion
As proven, based on the scalp EEG signals, after constructing the

functional networks, the subsequent statistics cannot always report the
variabilities across participants, due to multiple irrelevant factors. As a
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Fig. 3. Statistics in P300 amplitudes among the three groups. The blue-, red-,
and green-colored violins denote the HC, R-SCZ, and SCZ, respectively, and the
binary color-coded line with an asterisk reflects the significant difference in
P300 amplitudes between the two groups under a significance level of 0.05.

Table 2
Classification performances based on the P300 amplitude and reconstructed
resting-state networks.

P300 amplitudes Network properties Network topologies

39.67% + 8.01%
13.22% + 2.67%
33.33% + 0.01%
18.79% + 2.61%

Accuracy 38.86% + 9.31%
Precision 20.76% + 13.03%
Recall 36.65% + 4.06%
Fl-score 23.87% + 10.08%

94.93% + 4.82%
95.28% + 8.05%
93.81% + 11.24%
93.88% + 6.57%

consequence, those latent disease-specific variations were hidden.
Hence, in our current study, we newly iterated the framework of cVAEs
applied in the contrasts among three groups, aiming to disentangle both
patient- and relative-specific variations from the shared background
across groups. Primarily, the statistical comparison between the recon-
structed and original resting-state networks in Fig. 1 validated the val-
idity of this new framework of cVAEs applied in the three groups. Hence,
we accordingly acquired the latent patient- and relative-specific varia-
tions and then reconstructed their resting-state networks.

The information transition and processing in the brain largely rely on
efficient network configurations. For SCZ, previous studies have widely
reported disconnected communications among multiple brain regions,
including frontal lobes (Ohtani et al., 2014; Ranlund et al., 2016).
Herein, based on the reconstructed networks, we explored potential
network distortions among the three groups, which revealed decreased
inner-frontal connectivity and increased frontal-occipital connectivity in
both SCZ and R-SCZ. As demonstrated previously (Broyd et al., 2009;
Ongur et al., 2010), SCZ patients were found to show increased sensi-
tivity to both the external environment and self-referential or intro-
spective thought, thus leading to stronger activity represented by the
resting-state long-range connectivity. In the meantime, frontal hypo-
connectivity is also widely reported (Di Lorenzo et al., 2015) and is in-
dependent of the duration of the SCZ course. The impairment in
resting-state frontal connectivity is thus believed to be one of the mea-
sures of long-lasting cognitive deficit in SCZ. Given both SCZ and their
relatives carry similar pathogenic genes, herein, when compared to HC,
abnormal topological patterns were identified in both SCZ and R-SCZ,
which illustrated that their shared abnormalities are considered to be
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the genetically driven markers of risk (Sullivan et al., 2003). Further-
more, when specifically exploring the networks of SCZ and R-SCZ, the
differences in Fig. 2 further validated this tendency, as stronger
long-rang frontal-parietal connectivity was also uncovered for SCZ.

However, when further investigating the difference in resting-state
network properties, no differences were found for both original and
reconstructed networks. Considering these network properties were
mainly the direct statistical measurements of the networks, although
essentially derived from the networks, they still cannot encompass the
entire information hidden in network topologies. And when using these
network properties to classify the three groups (HC vs. SCZ vs. R-SCZ),
we only acquired the unsatisfying accuracy of 31.56% =+ 7.51% for the
original networks and 34.75% =+ 6.30% for the reconstructed networks.
By contrast, the network topologies describe more details of the allo-
cation of relevant brain resources, particularly outlining the hubs in the
configuration (Li et al., 2023; Xu et al., 2014a). In fact, in our previous
studies, we have already clarified the lower accuracy acquired by
adopting network properties as the discriminative features than that of
network topologies (Li et al., 2019). In essence, apart from providing
plenty of accounts for elaborating the illness-induced distortions (Fox
and Raichle, 2007), the network topologies had been widely applied in
the recognition of different variables (Gomez-Pilar et al., 2016). Herein,
by adopting the F-score to screen the salient features of the network
topologies, we acquired the highest accuracy of 96.80% =+ 2.87%, along
with the precision of 95.05% + 4.28%, recall of 98.18% =+ 3.83%, and
Fl-score of 96.51% + 2.83%. These reminded us that based on the
reconstructed resting-state networks, we could achieve reliable recog-
nition of SCZ and their relatives from healthy populations.

When occupied in the requested tasks, a target stimulus can evoke a
clear P300 only if the related information is efficiently processed in the
brain (Bledowski et al.,, 2004; Musso et al.,, 2011). Whereas, the
dysfunctional brain would then lead to P300 deficits, including
decreased amplitude and prolonged latency (Daffner et al., 2003). In
essence, P300 has been widely accepted as an endophenotype of SCZ,
herein, after matching participants who had both resting-state and task
designs, the comparison in P300 amplitudes was first performed. And as
displayed in Fig. 3, we did find decreased P300 amplitudes in both SCZ
and R-SCZ when compared to that of HC, implying the P300 amplitudes
could be used in the classification of the three groups. However, it was
unexpected that when using the P300 amplitudes as the discriminative
features, we only acquired an accuracy of 38.86% =+ 9.31%, which was
clearly lower than expected. On the contrary, the classification based on
the reconstructed network topologies consistently achieved the highest
accuracy of 94.93% + 4.82%, which validated the validity of our pro-
posed strategy again.

In the end, future potential works are further expected herein. In
essence, growing evidence has widely reported the etiologic overlap
among SCZ, schizoaffective disorder, and bipolar disorder, which makes
them increasingly difficult to recognize (Laursen et al., 2009; Maier
et al., 2006). Given that our current study demonstrated the superiority
of this new framework of cVAEs in capturing disease-specific variations,
it is thus believed to greatly help explore the pathological mechanism
subserving varying mental illnesses, which would be putative electro-
physiological biomarkers for clinical screening of these patients, leading
to the promoted diagnosis of related mental diseases. Therefore, in our
future works, those diseases which have etiologic overlaps would be
investigated to validate the capacity of this newly iterated framework of
cVAEs in disentangling the disease-specific variations from the shared
background across groups, as well as achieve the accurate recognition of
varying mental diseases.

4. Conclusion
Overall, by newly developing and applying the framework of cVAEs

in the contrasts among the three groups, the latent network patterns
corresponding to the SCZ and R-SCZ were effectively captured, based on
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the reconstructed resting-state networks. And further statistics of the
reconstructed resting-state networks reported the network distortions, e.
g., the inner-frontal hypoconnectivity and frontal-occipital hyper-
connectivity, while analyses on original networks revealed no differ-
ences. And only when the classification was accomplished based on the
reconstructed network metrics, the satisfying classification performance
would be acquired, as the highest accuracy of 96.80% =+ 2.87%, along
with the precision of 95.05% + 4.28%, recall of 98.18% =+ 3.83%, and
F1-score of 96.51% =+ 2.83%, was obtained. The findings of our current
study consistently validated the validity of the newly iterated frame-
work of cVAEs in three groups, and the identified network distortions
will provide more evidence explaining the brain deficits in SCZ, as well
as facilitate the diagnosis of SCZ from healthy populations.

5. Materials and methods
5.1. Participants

The current research was approved by the Institutional Research
Ethics Board of each participating site, which included five Bipolar-
Schizophrenia Network on Intermediate Phenotypes (B-SNIP) con-
sortium sites and three Psychosis and Affective Research Domains and
Intermediate Phenotypes (PARDIP) sites. The written informed consent
was accordingly collected from all participants. Herein, we mainly
concentrated on three participant groups, including SCZ (N = 110, 34
females, aged 31.88 + 11.50 years), R-SCZ (N = 109, 71 females, aged
42.99 + 15.27 years), and demographically comparable HC (N = 118,
66 females, aged 38.11 + 12.03 years). The details of participants’ de-
mographic characteristics and clinical states can be found previously
(Parker et al., 2021).

5.2. EEG data acquisition

The resting-state and task EEG datasets were recorded by using
Neuroscan Acquire and Synamps2 recording systems (Compumedrics
Neuroscan, El Paso, TX). During recording, 64 Ag/AgCl electrodes were
distributed following the standard 10-10 EEG system plus mastoids and
CP1/2 locations to provide sampling lower on the back of the head, with
nose reference and forehead ground. To guarantee the signal quality, the
impedance per electrode was kept below 5 k<, along with the sampling
rate of 1000 Hz.

On one hand, concerning the resting-state design, participants were
first requested to sit relaxed, refrain from movements, and avoid
excessive blinking, along with their resting-state EEG being recorded.
On the other hand, as for task design, the auditory oddball task, con-
sisting of 100 target tones (1500 Hz) and 567 standard tones (1000 Hz)
delivered in a pseudorandom order at 70 dB, was performed. As depic-
ted previously (Parker et al., 2021), once aware of the target tones,
participants were requested to press a button. And during tasks, the task
EEG was simultaneously collected.

5.3. EEG data analysis

5.3.1. Resting-state EEG preprocessing

To acquire reliable EEG segments for subsequent analyses, after data
recording, the raw resting-state EEG data were exported into MATLAB
(v2014a; MathWorks, Inc., USA). And multiple preprocessing proced-
ures were performed to accomplish the data preprocessing, which
included a neutral reference of the Reference Electrode Standardization
Technique (REST) (Dong et al., 2017), [0.5, 45] Hz offline bandpass
filtering, 2-s-length data segmentation, and artifact segment removal
(£ 75 pV as the threshold).

5.3.2. Task P300 amplitude
Concerning the task data, we mainly extracted the P300 amplitudes
for all participants. Concretely, the raw task data were also first re-
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referenced to REST. And then, [0.5, 45] Hz bandpass filtering, [— 200,
800] ms data segmentation (0 ms indicates the stimulus onset), [— 200,
0] ms baseline correction, and artifact removal (475 pV as the
threshold) were accordingly applied to the re-referenced data, to extract
the artifact-free trials. Thereafter, all of the artifact-free target trials
were averaged to achieve the trial-averaged ERP for each participant.
And on the electrode Pz, within a time interval of [300,600] ms after the
target stimuli, P300 amplitude was extracted for each participant by
averaging amplitudes within a time window of + 20 ms centered at the
largest positive peak.

5.3.3. Original network construction

As illustrated in previous studies (Miljevic et al., 2022), the scalp
electrodes nearby usually obtain a similar contribution from cortical
sources and capture a similar activity. Hence, to reduce the effect of
volume conduction on further analyses, 32 sparse electrodes were
picked out for the subsequent functional network analysis. Herein, the
phase locking value (PLV) was applied to construct the original
resting-state EEG networks. As defined, the Hilbert transform (HT) is
calculated to form the analytical signal H(t) for both signals as,

{Hx(t) = x(r) + iHT.(t)

HL(t) — »(1) + iHT. (1) M

where HTx(t) and HT,(t) are the HT of x(t) and y(t), t denotes a time point
in x(t) and y(t), which are defined as follows:

HT.(1) = Lp.v. / © )

i ol —1

(2)

1 © ()
Hr 0 =Ly, [T 20 4
’ 7 —ol — 1

where the P.V. denotes the Cauchy principal value.
Thereafter, the analytical signal phases of x(t) and y(t) can be
computed as,

¢, = arctan HT.{1)
x(1)
HT, @
¢, = arctan (1)

y(0)
Finally, the PLV is formulated as follows:

1 N—1
2 Z i (8:80—9, (140)
N 4

=

w,plv — (4)

where P is the connection weight, ¢,(t) and ¢,(t) are the instantaneous
phases of x(t) and y(t), respectively, At is the sampling period, and N
denotes the sample number.

5.3.4. Reconstruction of resting-state network based on cVAEs

As inspired by previous reports (Aglinskas et al., 2022), the
disease-specific variabilities are usually hidden in the original
resting-state networks, hence, a new framework of cVAEs was accord-
ingly iterated to extract disease-specific network architectures. In detail,
relying on prior knowledge, the logical relationship between the infor-
mation contained in the three groups was primarily determined; first, we
set the data of the HC as the background, and the data of both SCZ and
R-SCZ as the targets. We then used three probabilistic encoders, i.e.,
4y, (z]x), 44, (fIx), and gy, (s|x), to estimate the posterior distribution z, f, s
of the latent variables of the three sets. Besides, a decoder fy(-) was
designed to reconstruct the input data by concatenating the latent var-
iables. For both SCZ and R-SCZ, let the data pass through three encoders
to obtain latent variables 2, f, s, and then concatenate them to get [z, f, s,
and the input data would be then reconstructed by the decoder fy(-). For
HC, only an encoder gy (z|x) was used to get the latent variable of z,
while f, and s were set as 0, which was concatenated to be [z, 0, 0], and
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we would then reconstruct the resting-state networks of HC through the
decoder fy(-). The detailed framework for the iterated cVAEs was
depicted in Fig. 4 below.

For resting-state networks of both SCZ and R-SCZ, we have the
following likelihood lower bounds,

(1) = oy, @y, 01as, 0 o (¥il2.f 8]
_KL (q@ @) | px (z))
KLy, (1) | po(1))

_KL <q¢: (slx;) || px (s)> )

)

where py(2), px(f), and py(s) represent the prior distribution of the
two background variables and significant variables of the latent spaces
of the SCZ and R-SCZ, respectively. Here, we assume that the three prior
distributions are multivariate isotropic Gaussian distributions p. (z).p. (f)
,Di(s) ~77(0,I).

For HC, we also have

Z(B;) = Eqy o fo(bilz.0.0)] — KL (4, 2Ib1) || po(c) ©

where pp(2) is the prior distribution of the latent variables of the HC, and
the same assumption is also Gaussian distribution, p(z) ~ .77(0,I).

Now, we infer z, f, s from the input data by training three encoders, i.
€., 4y, 44, and gy, respectively, to achieve feature extraction. A shared
decoder fy(-) is then trained to take as input the connections of the latent
variables and reconstruct the data. The Kullback-Leibler divergence
between the latent space variable and the Gaussian distribution and the
reconstruction error of the three sets of data are used as the loss function
to train the entire model until the parameters ¢,, ¢y, ¢;, and ¢ are
learned.

After the model training is completed, for the SCZ, we only used the
encoder g, to extract features and obtain s and then made z and f to be 0,
concatenating z, f, s into [0, 0, s] and sending it to the decoder fj(-) to get
the SCZ-specific pattern. Similarly, for R-SCZ, we only used the encoder

M ot

M ot

Fig. 4. The iterated framework of cVAEs applied in the contrast and recon-
struction of resting-state networks among the three groups.
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qy, and got f, let z and s be 0 and concatenate z, f, s into [0, f, 0], and
using the decoderfy(-), we would acquire the unique pattern of R-SCZ.
Concerning the HC, the data would only be used as the background data
by the encoder g, , which is the shared mode of the three sets.

After successfully reconstructing the resting-state networks for par-
ticipants in the three groups, we then statistically explored the differ-
ences in the reconstructed networks by using the independent sample t-
tests (HC vs. SCZ, HC vs. R-SCZ, and SCZ vs. R-SCZ). And Bonferroni
correction for multiple comparisons was performed to control for type I
error.

5.3.5. Resting-state network properties

Herein, to quantify the brain efficiency, two traditional network
properties (i.e., CC, CPL, GE, and LE) were calculated for the recon-
structed networks, by using the brain connectivity toolbox (BCT, http://
www.nitrc.org/projects/bct/) (Rubinov and Sporns, 2010). In formu-
lations, let wg-l" is the edge weight of the reconstructed networks between
nodes i-th and j-th, djj represents the shortest weighted path length be-
tween nodes i-th and j-th, n represents the node number, and ¥ repre-
sents the set of all nodes in a given network. Both CC and CPL were then
formulated as,

)

1 e i#i ’
CPL = — _— 8
D3 ®

1 o, i
GE=-Y 1" ©

=l 1

—1\ 1/
| , ; '(Wl,jplvwihplv [djh(Ti)} 1)1 3
LE — _Z].he J#

n<
iy Zwijp]v <Zwl_jplv — 1)

jev jew

(10)

5.3.6. Classification among the three groups

It is clinically illustrated that both SCZ and R-SCZ consistently carry
disease-specific genes, thus, accurately recognizing both from healthy
populations always draws huge attention. Herein, we eventually tried if
the captured electrophysiological metrics could be applied to facilitate
the classification of the three groups. Thus, both resting-state network
properties and topologies were accordingly extracted and regarded as
the discriminative features, and the Support Vector Machine (SVM)
classifier with a 10-fold cross-validation strategy was used to achieve the
classification. Furthermore, the classification performance of resting-
state networks would be also confirmed by comparing with the accu-
racies of using the P300 amplitude. Of note, taking the reconstructed
resting-state network topologies as examples, during each time of cross-
validation, all participants were assigned to the independent testing and
training set; and during the training process, to avoid overfitting, by
adopting the F-score, distinguished edges with the 5% largest F-score
value were extracted, along with their connectivity strengths being
regarded as the discriminative features to train the SVM classifier.
Thereafter, the testing features were extracted from the testing set
following the rules formed in the training set, which would be further
inputted into the trained SVM classifier to acquire the classification re-
sults. To avoid randomization, these procedures were repeated 1000
times, along with the average accuracy, precision, recall, and F1-score
being reported. The detailed formulations of these indices were depic-
ted as follows,
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TP + TN
Accuracy = IV x 100% (11
TP +RP + TN + FN
Recall = T x 100% (12)
T TP+FN ’
TP
Precision = ——— x 1 1
recision P + FP x 100% (13)

Precision * Recall

F, — score =2 x 100% 14

Pl ikt
Precision + Recall

where TP indicates the positive group of being correctly predicted, TN
indicates the negative group of being correctly predicted, FP indicates
the positive group of being wrongly predicted, and FN indicates the
negative group of being wrongly predicted.
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