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A B S T R A C T   

Given a multitude of genetic and environmental factors, when investigating the variability in schizophrenia 
(SCZ) and the first-degree relatives (R-SCZ), latent disease-specific variation is usually hidden. To reliably 
investigate the mechanism underlying the brain deficits from the aspect of functional networks, we newly 
iterated a framework of contrastive variational autoencoders (cVAEs) applied in the contrasts among three 
groups, to disentangle the latent resting-state network patterns specified for the SCZ and R-SCZ. We demon
strated that the comparison in reconstructed resting-state networks among SCZ, R-SCZ, and healthy controls (HC) 
revealed network distortions of the inner-frontal hypoconnectivity and frontal-occipital hyperconnectivity, while 
the original ones illustrated no differences. And only the classification by adopting the reconstructed network 
metrics achieved satisfying performances, as the highest accuracy of 96.80% ± 2.87%, along with the precision 
of 95.05% ± 4.28%, recall of 98.18% ± 3.83%, and F1-score of 96.51% ± 2.83%, was obtained. These findings 
consistently verified the validity of the newly proposed framework for the contrasts among the three groups and 
provided related resting-state network evidence for illustrating the pathological mechanism underlying the brain 
deficits in SCZ, as well as facilitating the diagnosis of SCZ.   

1. Introduction 

As a widely accepted lifetime neuropsychiatric syndrome, schizo
phrenia (SCZ) is usually characterized by multiple symptoms and signs 

of unknown etiology and has been linked to cognitive disturbances in 
recognizing, processing, and responding to novel stimuli (Insel, 2010; 
Murillo-Garcia et al., 2022). Compared to the healthy populations, 
previous studies have greatly revealed deficits in multiple brain regions 
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of SCZ patients, such as the anterior cingulate cortex and prefrontal 
cortex (Li et al., 2018; Mouchlianitis et al., 2015), as well as their 
inter-regional communications, which is commonly termed as "dis
connectivity hypothesis" (Stephan et al., 2009). 

As illustrated previously, the resting-state activity consumes the 
majority of the brain energy (exceeding 95%) (Raichle, 2010), thus 
spontaneous activity is believed to reflect the potential of the brain to 
efficiently process information (Jiang et al., 2023b; Si et al., 2023; Zhang 
et al., 2016), as well as offer abundant accounts for elaborating the 
illness-induced distortions (Feng et al., 2023; Yang et al., 2023). 
Particularly, multiple spatially distributed but functionally linked re
gions (Li et al., 2023; Yi et al., 2022) in the brain coupled with each 
other, forming a larger-scale complex network (Bassett and Sporns, 
2017; Jiang et al., 2023a; Sporns, 2022). Concerning the resting-state 
networks, over the past decades, plenty of resting-state studies have 
provided a bulk of evidence for explaining the intrinsic brain abnor
malities in SCZ (da Cruz et al., 2020; Jiang et al., 2022; Li et al., 2022; 
Yang et al., 2015). For example, when exploring the distortions in 
functional subsystems in SCZ, both decreased executive control and 
dorsal attention networks and the attenuated integration between the 
executive control and default mode networks were identified (Wood
ward et al., 2011). 

However, from a macroscopic perspective, the human brain is sha
ped by a multitude of genetic and environmental factors, the disease- 
specific variations are thus difficult to be identified, due to the mass of 
multiple irrelevant factors. On one hand, neurophysiological biomarkers 
of psychosis risk have been previously investigated, which aims to 
explain how related pathological risk is conferred (Wang et al., 2022). 
And a portion of the identified biomarkers has been indeed reported to 
be closely associated with increased psychosis risk, as well as help 
predict its transition (Lepock et al., 2018). For example, significant 
volume reductions in left anterior cornu ammonis were found for the 
relatives, which deviated from the healthy controls (HC), while a 
significantly larger right posterior subiculum was reported when 
compared with first-episode SCZ (Choi et al., 2022). In addition, it has 
also been clinically proven that SCZ and their first-degree relatives 
(R-SCZ) carry similar disease-specific genes (Sullivan et al., 2003), and 
previous studies had further reported a continuous increase of the ge
netic SCZ risk variation burden from unaffected family members to SCZ 
patients (Ahangari et al., 2022). However, in related studies, apart from 
some obvious variations uncovered and reported, in most cases, it is 
difficult for us to clearly depict the variability existing between patients 
and their relatives. Hence, recent studies have proposed a framework 
defining the contrastive variational autoencoders (cVAEs) to disentangle 
autism-specific neuroanatomical variation from typical developing 
participants (Aglinskas et al., 2022). In this work, they successfully 
extracted the autism-specific variation and reported close associations 
between autism-specific variation and individual symptoms. Herein, we 
mainly tried to disentangle the disease-specific variations from the 
shared background across the SCZ, R-SCZ, and HC, to uncover the pa
tient- and relative-specific restings-state network structures. 

Overall, SCZ has been widely clarified to be attributed to brain 
network disconnectivity (Jiang et al., 2022; Stephan et al., 2009), and 
related neurophysiological markers, also referring as endophenotypes, 
have been reported to be impaired in the R-SCZ (Wang et al., 2022), as 
well, which can help decode how related genetic risk is conferred. 
Herein, given that recent studies cannot always efficiently capture the 
disease-specific variations among varying populations, we thus 
concentrated on this latent issue and attempted to disentangle the latent 
disease-specific network disconnectivity from what is common among 
the three groups. And further, a promoted aim of our current study was 
to resolve if the reconstructed networks could provide new evidence 
elaborating the network distortions in SCZ, as well as provide possible 
biomarkers for the clinical diagnosis of SCZ. Therefore, based on the 
originally constructed resting-state electroencephalogram (EEG) net
works of all participants, a new framework of cVAEs was iterated to 

accomplish the decomposition of functional networks among the three 
groups. In the meantime, the resting-state activity has been widely 
acknowledged to provide possible biomarkers for recognizing SCZ (Li 
et al., 2022; Li et al., 2019; Nunez et al., 2017), for instance, a high 
accuracy of approximately 90% was achieved using two rest EEG 
network measurements to classify amnestic mild cognitive impairment 
from normal cognition (Xu et al., 2014b). Herein, we would further 
reveal whether these network variations disentangled could help facil
itate the diagnosis of SCZ. 

2. Results 

Herein, we primarily concentrated on the resting-state networks to 
explore the disease-specific deficits in the brain of SCZ. For all partici
pants, after data preprocessing, the PLV networks were first constructed 
and accordingly compared among the three groups, however, no dif
ferences were reported (p > 0.05, Bonferroni corrected). Hence, to 
further capture the differences in resting-state networks among these 
groups, by inputting the original networks into the cVAEs, the latent 
patient- and relative-specific network variations were disentangled, 
which was similar to the concept of contrastive principal component 
analysis. Thereafter, for all participants, the characteristic matrices were 
extracted, accordingly reconstructing the resting-state networks. Fig. 1 
reports the comparison between original and reconstructed resting-state 
networks, illustrating no significant differences (p > 0.05, Bonferroni 
corrected), which confirmed the reliability of the network 
reconstruction. 

Given the original networks failed in mining between-group differ
ences (HC vs. R-SCZ, HC vs. SCZ, and R-SCZ vs. SCZ), we then tried if the 
reconstructed networks could work. Concretely, based on the recon
structed networks, topological differences among the three groups were 
explored, which did capture potential variability across groups. Just as 
displayed in Fig. 2 (p < 0.05, Bonferroni corrected), when comparing 
both SCZ and R-SCZ with HC, we consistently found decreased short- 
range inner-frontal connectivity, as well as increased long-range fron
tal-occipital connectivity for both groups. And when comparing the R- 
SCZ and SCZ, both weaker bilateral temporal connectivity and stronger 
long-rang frontal-parietal connectivity were uncovered for SCZ. Con
cerning the resting-state network properties, for both original and 
reconstructed networks, four network properties, e.g., clustering co
efficients (CC), characteristic path length (CPL), global efficiency (GE), 
and local efficiency (LE), showed no significant differences among the 
three groups (p > 0.05, Bonferroni corrected). 

In recent decades, achieving the accurate recognition of SCZ always 
draws huge attention. Our following analyses then tried if the original 
and reconstructed networks could help facilitate the classification of 
SCZ. On one hand, based on the original networks, both the network 
topologies and properties were applied to accomplish the classification, 
and as listed in Table 1, we only acquired an accuracy of 31.56% 
± 7.51% for network properties and of 35.38% ± 9.14% for network 
topologies, which was obviously lower than expected. On the other 
hand, both topologies and properties of the reconstructed networks were 
used, as well. In Table 1, we did find that when reconstructed network 
topologies were used, the highest accuracy of 96.80% ± 2.87% was 
acquired, along with the precision of 95.05% ± 4.28%, recall of 98.18% 
± 3.83%, and F1-score of 96.51% ± 2.83%. Whereas, the network 
properties still acquired unsatisfying performance, only an accuracy of 
34.75% ± 6.30% was obtained. 

Apart from the classification among these three groups, we further 
validated if the reconstructed network topologies could also succeed in 
recognizing SCZ from their relatives. Thus, following a similar cross- 
validation strategy, the classification of SCZ vs. R-SCZ was accom
plished. Herein, we acquired an accuracy of 91.40% ± 9.63%, as well as 
a precision of 92.86% ± 7.09%, recall of 92.29% ± 8.28%, and F1-score 
of 91.16% ± 9.80%, which did clarify the validity of the reconstructed 
network topologies in facilitating the recognition of SCZ. 
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Moreover, given deficits in P300 amplitudes are regarded as an 
endophenotype of SCZ (Chun et al., 2013; Jeon and Polich, 2003), it has 
been widely applied to discriminate SCZ from HC (Li et al., 2019; Tur
etsky et al., 2015). Hence, the P300 amplitudes were also considered in 
achieving the classification of SCZ. In this study, considering not all 
participants had both resting-state and task designs, we thus only 
brought participants who had both resting-state and task EEG datasets 
into the subsequent analyses, which consisted of 74 HCs, 69 SCZs, and 
94 R-SCZs. Thereafter, for these participants, based on their 

trial-averaged ERP signals, the P300 amplitudes were extracted within a 
time duration of [300, 500] ms (0 ms denotes the target onsets). And we 
statistically investigated the potential differences in P300 amplitudes. 
Just as displayed in Fig. 3, the P300 amplitudes of SCZ were the smallest 
(vs. R-SCZ: t = − 2.11, p = 0.04; vs. HC: t = − 4.51, p < 0.00), and the 
R-SCZ also showed the smaller P300 amplitudes (t = − 2.52, p = 0.01), 
when compared to that of HC. 

Eventually, the P300 amplitudes were regarded as discriminative 
features to accomplish the classification. The results showed that the 
P300 amplitudes only acquired an accuracy of 38.86% ± 9.31%, pre
cision of 20.76% ± 13.03%, recall of 36.65% ± 4.06%, and F1-score of 
23.87% ± 10.08%, which is still lower than expected. On the contrary, 
the network topologies still acquired the highest accuracy of 94.93% 
± 4.82%, along with a precision of 95.28% ± 8.05%, recall of 93.81% 
± 11.24%, and F1-score of 93.88% ± 6.57%. These consistently vali
dated again that the reconstructed resting-state network topologies were 
helpful and would provide potential biomarkers for the diagnosis of SCZ. 
Table 2. 

3. Discussion 

As proven, based on the scalp EEG signals, after constructing the 
functional networks, the subsequent statistics cannot always report the 
variabilities across participants, due to multiple irrelevant factors. As a 

Fig. 1. Statistics between the original and reconstructed resting-state networks based on the cVAEs for the HC, R-SCZ, and SCZ groups (p > 0.05, Bonferroni cor
rected), respectively. 

Fig. 2. Comparison of the reconstructed resting-state networks among the three groups. In each subfigure, the blue-solid lines denote the stronger edges in variable 1 
(HC, R-SCZ, and HC, respectively) than that in variable 2 (SCZ, SCZ, and R-SCZ, respectively), while the red-solid lines denote the opposite. 

Table 1 
Classification performances based on the resting-state network metrics.   

Original resting-state networks  Reconstructed resting-state 
networks 

Properties Topologies  Properties Topologies 

Accuracy 31.56% 
± 7.51% 

35.38% 
± 9.14%  

34.75% 
± 6.30% 

96.80% 
± 2.87% 

Precision 14.02% 
± 8.15% 

41.56% 
± 10.16%  

11.58% 
± 2.10% 

95.05% 
± 4.28% 

Recall 33.07% 
± 2.31% 

5015% 
± 19.73%  

33.33% 
± 0.01% 

98.18% 
± 3.83% 

F1-score 17.18% 
± 4.95% 

44.66% 
± 13.95%  

17.08% 
± 2.37% 

96.51% 
± 2.83%  
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consequence, those latent disease-specific variations were hidden. 
Hence, in our current study, we newly iterated the framework of cVAEs 
applied in the contrasts among three groups, aiming to disentangle both 
patient- and relative-specific variations from the shared background 
across groups. Primarily, the statistical comparison between the recon
structed and original resting-state networks in Fig. 1 validated the val
idity of this new framework of cVAEs applied in the three groups. Hence, 
we accordingly acquired the latent patient- and relative-specific varia
tions and then reconstructed their resting-state networks. 

The information transition and processing in the brain largely rely on 
efficient network configurations. For SCZ, previous studies have widely 
reported disconnected communications among multiple brain regions, 
including frontal lobes (Ohtani et al., 2014; Ranlund et al., 2016). 
Herein, based on the reconstructed networks, we explored potential 
network distortions among the three groups, which revealed decreased 
inner-frontal connectivity and increased frontal-occipital connectivity in 
both SCZ and R-SCZ. As demonstrated previously (Broyd et al., 2009; 
Ongur et al., 2010), SCZ patients were found to show increased sensi
tivity to both the external environment and self-referential or intro
spective thought, thus leading to stronger activity represented by the 
resting-state long-range connectivity. In the meantime, frontal hypo
connectivity is also widely reported (Di Lorenzo et al., 2015) and is in
dependent of the duration of the SCZ course. The impairment in 
resting-state frontal connectivity is thus believed to be one of the mea
sures of long-lasting cognitive deficit in SCZ. Given both SCZ and their 
relatives carry similar pathogenic genes, herein, when compared to HC, 
abnormal topological patterns were identified in both SCZ and R-SCZ, 
which illustrated that their shared abnormalities are considered to be 

the genetically driven markers of risk (Sullivan et al., 2003). Further
more, when specifically exploring the networks of SCZ and R-SCZ, the 
differences in Fig. 2 further validated this tendency, as stronger 
long-rang frontal-parietal connectivity was also uncovered for SCZ. 

However, when further investigating the difference in resting-state 
network properties, no differences were found for both original and 
reconstructed networks. Considering these network properties were 
mainly the direct statistical measurements of the networks, although 
essentially derived from the networks, they still cannot encompass the 
entire information hidden in network topologies. And when using these 
network properties to classify the three groups (HC vs. SCZ vs. R-SCZ), 
we only acquired the unsatisfying accuracy of 31.56% ± 7.51% for the 
original networks and 34.75% ± 6.30% for the reconstructed networks. 
By contrast, the network topologies describe more details of the allo
cation of relevant brain resources, particularly outlining the hubs in the 
configuration (Li et al., 2023; Xu et al., 2014a). In fact, in our previous 
studies, we have already clarified the lower accuracy acquired by 
adopting network properties as the discriminative features than that of 
network topologies (Li et al., 2019). In essence, apart from providing 
plenty of accounts for elaborating the illness-induced distortions (Fox 
and Raichle, 2007), the network topologies had been widely applied in 
the recognition of different variables (Gomez-Pilar et al., 2016). Herein, 
by adopting the F-score to screen the salient features of the network 
topologies, we acquired the highest accuracy of 96.80% ± 2.87%, along 
with the precision of 95.05% ± 4.28%, recall of 98.18% ± 3.83%, and 
F1-score of 96.51% ± 2.83%. These reminded us that based on the 
reconstructed resting-state networks, we could achieve reliable recog
nition of SCZ and their relatives from healthy populations. 

When occupied in the requested tasks, a target stimulus can evoke a 
clear P300 only if the related information is efficiently processed in the 
brain (Bledowski et al., 2004; Musso et al., 2011). Whereas, the 
dysfunctional brain would then lead to P300 deficits, including 
decreased amplitude and prolonged latency (Daffner et al., 2003). In 
essence, P300 has been widely accepted as an endophenotype of SCZ, 
herein, after matching participants who had both resting-state and task 
designs, the comparison in P300 amplitudes was first performed. And as 
displayed in Fig. 3, we did find decreased P300 amplitudes in both SCZ 
and R-SCZ when compared to that of HC, implying the P300 amplitudes 
could be used in the classification of the three groups. However, it was 
unexpected that when using the P300 amplitudes as the discriminative 
features, we only acquired an accuracy of 38.86% ± 9.31%, which was 
clearly lower than expected. On the contrary, the classification based on 
the reconstructed network topologies consistently achieved the highest 
accuracy of 94.93% ± 4.82%, which validated the validity of our pro
posed strategy again. 

In the end, future potential works are further expected herein. In 
essence, growing evidence has widely reported the etiologic overlap 
among SCZ, schizoaffective disorder, and bipolar disorder, which makes 
them increasingly difficult to recognize (Laursen et al., 2009; Maier 
et al., 2006). Given that our current study demonstrated the superiority 
of this new framework of cVAEs in capturing disease-specific variations, 
it is thus believed to greatly help explore the pathological mechanism 
subserving varying mental illnesses, which would be putative electro
physiological biomarkers for clinical screening of these patients, leading 
to the promoted diagnosis of related mental diseases. Therefore, in our 
future works, those diseases which have etiologic overlaps would be 
investigated to validate the capacity of this newly iterated framework of 
cVAEs in disentangling the disease-specific variations from the shared 
background across groups, as well as achieve the accurate recognition of 
varying mental diseases. 

4. Conclusion 

Overall, by newly developing and applying the framework of cVAEs 
in the contrasts among the three groups, the latent network patterns 
corresponding to the SCZ and R-SCZ were effectively captured, based on 

Fig. 3. Statistics in P300 amplitudes among the three groups. The blue-, red-, 
and green-colored violins denote the HC, R-SCZ, and SCZ, respectively, and the 
binary color-coded line with an asterisk reflects the significant difference in 
P300 amplitudes between the two groups under a significance level of 0.05. 

Table 2 
Classification performances based on the P300 amplitude and reconstructed 
resting-state networks.   

P300 amplitudes Network properties Network topologies 

Accuracy 38.86% ± 9.31% 39.67% ± 8.01% 94.93% ± 4.82% 
Precision 20.76% ± 13.03% 13.22% ± 2.67% 95.28% ± 8.05% 
Recall 36.65% ± 4.06% 33.33% ± 0.01% 93.81% ± 11.24% 
F1-score 23.87% ± 10.08% 18.79% ± 2.61% 93.88% ± 6.57%  
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the reconstructed resting-state networks. And further statistics of the 
reconstructed resting-state networks reported the network distortions, e. 
g., the inner-frontal hypoconnectivity and frontal-occipital hyper
connectivity, while analyses on original networks revealed no differ
ences. And only when the classification was accomplished based on the 
reconstructed network metrics, the satisfying classification performance 
would be acquired, as the highest accuracy of 96.80% ± 2.87%, along 
with the precision of 95.05% ± 4.28%, recall of 98.18% ± 3.83%, and 
F1-score of 96.51% ± 2.83%, was obtained. The findings of our current 
study consistently validated the validity of the newly iterated frame
work of cVAEs in three groups, and the identified network distortions 
will provide more evidence explaining the brain deficits in SCZ, as well 
as facilitate the diagnosis of SCZ from healthy populations. 

5. Materials and methods 

5.1. Participants 

The current research was approved by the Institutional Research 
Ethics Board of each participating site, which included five Bipolar- 
Schizophrenia Network on Intermediate Phenotypes (B-SNIP) con
sortium sites and three Psychosis and Affective Research Domains and 
Intermediate Phenotypes (PARDIP) sites. The written informed consent 
was accordingly collected from all participants. Herein, we mainly 
concentrated on three participant groups, including SCZ (N = 110, 34 
females, aged 31.88 ± 11.50 years), R-SCZ (N = 109, 71 females, aged 
42.99 ± 15.27 years), and demographically comparable HC (N = 118, 
66 females, aged 38.11 ± 12.03 years). The details of participants’ de
mographic characteristics and clinical states can be found previously 
(Parker et al., 2021). 

5.2. EEG data acquisition 

The resting-state and task EEG datasets were recorded by using 
Neuroscan Acquire and Synamps2 recording systems (Compumedrics 
Neuroscan, El Paso, TX). During recording, 64 Ag/AgCl electrodes were 
distributed following the standard 10–10 EEG system plus mastoids and 
CP1/2 locations to provide sampling lower on the back of the head, with 
nose reference and forehead ground. To guarantee the signal quality, the 
impedance per electrode was kept below 5 kΩ, along with the sampling 
rate of 1000 Hz. 

On one hand, concerning the resting-state design, participants were 
first requested to sit relaxed, refrain from movements, and avoid 
excessive blinking, along with their resting-state EEG being recorded. 
On the other hand, as for task design, the auditory oddball task, con
sisting of 100 target tones (1500 Hz) and 567 standard tones (1000 Hz) 
delivered in a pseudorandom order at 70 dB, was performed. As depic
ted previously (Parker et al., 2021), once aware of the target tones, 
participants were requested to press a button. And during tasks, the task 
EEG was simultaneously collected. 

5.3. EEG data analysis 

5.3.1. Resting-state EEG preprocessing 
To acquire reliable EEG segments for subsequent analyses, after data 

recording, the raw resting-state EEG data were exported into MATLAB 
(v2014a; MathWorks, Inc., USA). And multiple preprocessing proced
ures were performed to accomplish the data preprocessing, which 
included a neutral reference of the Reference Electrode Standardization 
Technique (REST) (Dong et al., 2017), [0.5, 45] Hz offline bandpass 
filtering, 2-s-length data segmentation, and artifact segment removal 
( ± 75 μV as the threshold). 

5.3.2. Task P300 amplitude 
Concerning the task data, we mainly extracted the P300 amplitudes 

for all participants. Concretely, the raw task data were also first re- 

referenced to REST. And then, [0.5, 45] Hz bandpass filtering, [− 200, 
800] ms data segmentation (0 ms indicates the stimulus onset), [− 200, 
0] ms baseline correction, and artifact removal ( ± 75 μV as the 
threshold) were accordingly applied to the re-referenced data, to extract 
the artifact-free trials. Thereafter, all of the artifact-free target trials 
were averaged to achieve the trial-averaged ERP for each participant. 
And on the electrode Pz, within a time interval of [300,600] ms after the 
target stimuli, P300 amplitude was extracted for each participant by 
averaging amplitudes within a time window of ± 20 ms centered at the 
largest positive peak. 

5.3.3. Original network construction 
As illustrated in previous studies (Miljevic et al., 2022), the scalp 

electrodes nearby usually obtain a similar contribution from cortical 
sources and capture a similar activity. Hence, to reduce the effect of 
volume conduction on further analyses, 32 sparse electrodes were 
picked out for the subsequent functional network analysis. Herein, the 
phase locking value (PLV) was applied to construct the original 
resting-state EEG networks. As defined, the Hilbert transform (HT) is 
calculated to form the analytical signal H(t) for both signals as, 
{

Hx(t) = x(t) + iHTx(t)
Hy(t) = y(t) + iHTy(t)

(1)  

where HTx(t) and HTy(t) are the HT of x(t) and y(t), t denotes a time point 
in x(t) and y(t), which are defined as follows: 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

HTx(t) =
1
π P.V.

∫ ∞

− ∞

x(t′)
t − t′

dt′

HTy(t) =
1
π P.V.

∫ ∞

− ∞

y(t′)
t − t′

dt′
(2)  

where the P.V. denotes the Cauchy principal value. 
Thereafter, the analytical signal phases of x(t) and y(t) can be 

computed as, 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ϕx = arctan
HTx(t)

x(t)

ϕy = arctan
HTy(t)

y(t)

(3) 

Finally, the PLV is formulated as follows: 

wplv =

⃒
⃒
⃒
⃒
⃒

1
N

∑N− 1

j=0
ei(ϕx(jΔt)− ϕy(jΔt))

⃒
⃒
⃒
⃒
⃒

(4)  

where wplv is the connection weight, ϕx(t) and ϕy(t) are the instantaneous 
phases of x(t) and y(t), respectively, Δt is the sampling period, and N 
denotes the sample number. 

5.3.4. Reconstruction of resting-state network based on cVAEs 
As inspired by previous reports (Aglinskas et al., 2022), the 

disease-specific variabilities are usually hidden in the original 
resting-state networks, hence, a new framework of cVAEs was accord
ingly iterated to extract disease-specific network architectures. In detail, 
relying on prior knowledge, the logical relationship between the infor
mation contained in the three groups was primarily determined; first, we 
set the data of the HC as the background, and the data of both SCZ and 
R-SCZ as the targets. We then used three probabilistic encoders, i.e., 
qϕz (z|x), qϕf (f |x), and qϕs (s|x), to estimate the posterior distribution z, f, s 
of the latent variables of the three sets. Besides, a decoder fθ(⋅) was 
designed to reconstruct the input data by concatenating the latent var
iables. For both SCZ and R-SCZ, let the data pass through three encoders 
to obtain latent variables z, f, s, and then concatenate them to get [z, f, s], 
and the input data would be then reconstructed by the decoder fθ(⋅). For 
HC, only an encoder qϕz (z|x) was used to get the latent variable of z, 
while f, and s were set as 0, which was concatenated to be [z, 0, 0], and 
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we would then reconstruct the resting-state networks of HC through the 
decoder fθ(⋅). The detailed framework for the iterated cVAEs was 
depicted in Fig. 4 below. 

For resting-state networks of both SCZ and R-SCZ, we have the 
following likelihood lower bounds, 

L x(xi) = Eqϕz (z)qϕf (f)qϕs (s)[fθ(xi|z, f , s)]

− KL
(

qϕz (z|xi) ‖ px(z)
)

− KL
(

qϕf (f |xi) ‖ px(f)
)

− KL
(

qϕs (s|xi) ‖ px(s)
)
,

(5) 

where px(z), px(f), and px(s) represent the prior distribution of the 
two background variables and significant variables of the latent spaces 
of the SCZ and R-SCZ, respectively. Here, we assume that the three prior 
distributions are multivariate isotropic Gaussian distributions px(z),px(f)
,px(s) ∼ N (0, I). 

For HC, we also have 

L b
(
bj
)
= Eqϕz (z)[fθ(bi|z, 0, 0)] − KL

(
qϕz (z|bi) ‖ pb(z)

)
(6)  

where pb(z) is the prior distribution of the latent variables of the HC, and 
the same assumption is also Gaussian distribution, pb(z) ∼ N (0, I). 

Now, we infer z, f, s from the input data by training three encoders, i. 
e., qϕz , qϕf , and qϕs , respectively, to achieve feature extraction. A shared 
decoder fθ(⋅) is then trained to take as input the connections of the latent 
variables and reconstruct the data. The Kullback-Leibler divergence 
between the latent space variable and the Gaussian distribution and the 
reconstruction error of the three sets of data are used as the loss function 
to train the entire model until the parameters ϕz, ϕf , ϕs, and θ are 
learned. 

After the model training is completed, for the SCZ, we only used the 
encoder qϕs to extract features and obtain s and then made z and f to be 0, 
concatenating z, f, s into [0, 0, s] and sending it to the decoder fθ(⋅) to get 
the SCZ-specific pattern. Similarly, for R-SCZ, we only used the encoder 

qϕf and got f, let z and s be 0 and concatenate z, f, s into [0, f, 0], and 
using the decoderfθ(⋅), we would acquire the unique pattern of R-SCZ. 
Concerning the HC, the data would only be used as the background data 
by the encoder qϕz , which is the shared mode of the three sets. 

After successfully reconstructing the resting-state networks for par
ticipants in the three groups, we then statistically explored the differ
ences in the reconstructed networks by using the independent sample t- 
tests (HC vs. SCZ, HC vs. R-SCZ, and SCZ vs. R-SCZ). And Bonferroni 
correction for multiple comparisons was performed to control for type I 
error. 

5.3.5. Resting-state network properties 
Herein, to quantify the brain efficiency, two traditional network 

properties (i.e., CC, CPL, GE, and LE) were calculated for the recon
structed networks, by using the brain connectivity toolbox (BCT, http:// 
www.nitrc.org/projects/bct/) (Rubinov and Sporns, 2010). In formu
lations, let wij

plv is the edge weight of the reconstructed networks between 
nodes i-th and j-th, dij represents the shortest weighted path length be
tween nodes i-th and j-th, n represents the node number, and Ψ repre
sents the set of all nodes in a given network. Both CC and CPL were then 
formulated as, 

CC =
1
n
∑

i∈Ψ

∑

j,h∈Ψ

(
wplv

ij wplv
ih wplv

jh

)1/3

∑

j∈Ψ
wplv

ij

(
∑

j∈Ψ
wplv

ij − 1

) (7)  

CPL =
1
n
∑

i∈Ψ

∑

j∈Ψ ,j∕=i
dij

n − 1
(8)  

GE =
1
n

∑

i∈Ψ

∑

j∈Ψ ,j∕=i

1
dij

n − 1
(9)  

LE =
1
n

∑

i∈Ψ

∑

j,h∈Ψ ,j∕=i

(
wij

plvwih
plv
[
djh(Ψi)

]− 1)1/3

∑

j∈Ψ
wij

plv

(
∑

j∈Ψ
wij

plv − 1

) (10)  

5.3.6. Classification among the three groups 
It is clinically illustrated that both SCZ and R-SCZ consistently carry 

disease-specific genes, thus, accurately recognizing both from healthy 
populations always draws huge attention. Herein, we eventually tried if 
the captured electrophysiological metrics could be applied to facilitate 
the classification of the three groups. Thus, both resting-state network 
properties and topologies were accordingly extracted and regarded as 
the discriminative features, and the Support Vector Machine (SVM) 
classifier with a 10-fold cross-validation strategy was used to achieve the 
classification. Furthermore, the classification performance of resting- 
state networks would be also confirmed by comparing with the accu
racies of using the P300 amplitude. Of note, taking the reconstructed 
resting-state network topologies as examples, during each time of cross- 
validation, all participants were assigned to the independent testing and 
training set; and during the training process, to avoid overfitting, by 
adopting the F-score, distinguished edges with the 5% largest F-score 
value were extracted, along with their connectivity strengths being 
regarded as the discriminative features to train the SVM classifier. 
Thereafter, the testing features were extracted from the testing set 
following the rules formed in the training set, which would be further 
inputted into the trained SVM classifier to acquire the classification re
sults. To avoid randomization, these procedures were repeated 1000 
times, along with the average accuracy, precision, recall, and F1-score 
being reported. The detailed formulations of these indices were depic
ted as follows, Fig. 4. The iterated framework of cVAEs applied in the contrast and recon

struction of resting-state networks among the three groups. 
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Accuracy =
TP + TN

TP + RP + TN + FN
× 100% (11)  

Recall =
TP

TP + FN
× 100% (12)  

Precision =
TP

TP + FP
× 100% (13)  

F1 − score = 2 ∗
Precision ∗ Recall
Precision + Recall

× 100% (14)  

where TP indicates the positive group of being correctly predicted, TN 
indicates the negative group of being correctly predicted, FP indicates 
the positive group of being wrongly predicted, and FN indicates the 
negative group of being wrongly predicted. 
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