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A B S T R A C T   

The thermal stability of crystalline-amorphous interfaces was investigated in Fe/FeW nanomultilayers (NMs), 
where the alloy layers were amorphous in the as-sputtered state with concentrations of Fe-38 at.% W or Fe-67 at. 
% W. Compositionally driven devitrification, layer breakdown, and recrystallization were compared using both 
single-layer and multilayer configurations at temperatures ranging from 250 ◦C to 750 ◦C. Annealing of the NMs 
to 500 ◦C revealed destabilization in the Fe-67 W layers with the formation of crystalline-crystalline interfaces 
(CCIs) whereas the Fe-38 W layers remained intact with stable crystalline-amorphous interfaces (CAIs). Further 
annealing to 750 ◦C resulted in multilayer evolution and recrystallization, where breakdown of the CAIs was 
attributed to layer intermixing while the CCIs experienced intermetallic grooving and pinch-off. The influence of 
amorphous stability, composition, and intermetallic formation are discussed with respect to the NM breakdown 
mechanisms. This work highlights a promising strategy for exploring compositionally driven stability at the 
nanoscale in crystalline-amorphous alloys.   

Metallic nanomultilayers (NMs) are thin film coatings consisting of 
alternating nanometric metallic layers that can be tailored to control 
composition, interface energy, and layer structure [1]. These materials 
have exhibited exceptional mechanical, optical, magnetic, and irradia
tion resistant properties, which are generally attributed to nanoscale 
features [2]. Furthermore, NMs can be readily tuned to alter film 
properties, thus providing convenient model systems for investigating 
fundamental mechanisms governing stability of nanostructured mate
rials [3], such as the effects of interfacial energy and solute segregation 
[4]. For example, pseudomorphic growth has been used to reduce 
interface energy and in turn improve thermal stability, but such a 
technique generally consists of NMs with ultrathin layers (<5 nm) [5–7]. 
For many systems, grain growth can be mitigated via kinetic and ther
modynamic stabilizing mechanisms. Zenner pinning reduces grain 
boundary mobility whereas solute segregation via doped grain bound
aries (DGBs) lowers interfacial free energy, thereby suppressing the 
overall driving force for coarsening [8]. Efforts have focused on 
modeling candidate material systems capable of solute segregated sta
bilization [9–11] and experimental verification [12–15] including the 

use of NMs to explore the implications of temperature dependent 
segregation [16]. 

Recent findings observed the formation of amorphous intergranular 
films (AIFs), often referred to as amorphous complexions, at extreme 
temperatures that significantly improve the thermal stability of the 
nanocrystalline state [17–19]. Formation of nanometer-scale disordered 
films occurred within DGBs and is postulated to further reduce grain 
boundary energy, thereby mitigating grain growth for particular alloy 
systems [20]. Additionally, alloys containing AIFs displayed improved 
irradiation damage resistance, largely attributable to the inherent excess 
free volume within amorphous films and at the crystalline-amorphous 
interfaces (CAIs) providing energetically favorable sites to accommo
date defects [21]. Therefore, interface engineering and incorporation of 
amorphous phases within NMs offer a potential route towards tailoring 
alloy stability in extreme environments including high temperature and 
irradiation [22]. However, current understanding of stability within 
NMs containing CAIs is largely restricted to metallic/ceramic and 
ceramic/ceramic systems [16,23]; the few studies on nanometallic sys
tems containing amorphous complexions convolute solute segregation 
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and CAI formation. Consequently, there is a gap in the scientific un
derstanding of how crystalline and amorphous-metallic phases influence 
stability in NM systems containing a high volumetric density of CAIs. 

In this work, NMs consisting of alternating nanocrystalline-Fe and 
amorphous-FeW layers are co-sputtered to identify the influence of CAIs 
on temperature-driven stability across two multilayer systems. Amor
phous layer compositions are deposited as Fe-38.0 at.% W or Fe-67.2 at. 
% W, which will be referred to henceforth as ‘Fe-38W’ and ‘Fe-67W’. A 
methodology is presented for investigating NMs containing amorphous 
metallic phases and assessing how CAIs influence microstructural sta
bility with results revealing compositional dependence of amorphous 
layers on overall NM stability. 

In order to assess the stability of individual compositions, monolithic 
amorphous films were deposited by direct current (DC) magnetron 
sputtering inside a vacuum chamber evacuated to a base pressure of 5.0 
× 10− 4 Pa onto quartz substrates to a nominal thickness of 1000 nm. 
Magnetron powers ranged from 35 to 60 W for Fe and 50–100 W for W, 
with a 6.7 × 10− 1 Pa working pressure of ultra-high pure grade argon; 
deposition rates ranged between 2.93 – 4.63 nm/min for Fe and 2.90 – 
6.02 nm/min for W. FeW compositions were tuned by controlling 
powers applied to Fe (99.95 at.% Fe) and W (99.9 at.% W) targets to 
achieve the compositions summarized in Table 1. These compositions 
were selected following Lu et al. [24], which reported FexW100-x coatings 
with 30 at.% < x < 80 at.% could produce amorphous phases but pre
sented limited data on thermal stability. 

The as-sputtered and annealed monolithic films were characterized 
using X-ray diffraction (XRD) on a Bruker D8 Advance X-ray diffrac
tometer and selected area electron diffraction (SAED) with an FEI Talos- 
F200C-G2 microscope. TEM lamellae were prepared using Helios G4 and 
G5 PFIB UXe-DualBeam FIB/SEMs. Annealing was conducted at 250 ◦C, 
500 ◦C, and 750 ◦C inside a GSL1100X tube furnace (MTI Corporation) 
for 96 h at 5 × 10− 5 Pa. 

The XRD profiles for as-sputtered and heat-treated monolithic sam
ples in Fig. 1 show diffuse peaks prior to heat treatment indicating that 
both as-sputtered films were X-ray amorphous [25]. Inset SAED (100 nm 
diameter) patterns of the as-sputtered samples exhibited overlapping 
diffuse diffraction rings and halos, consistent with XRD results. How
ever, subtle diffraction spots within the Fe-67 W SAED pattern suggest 
nanoscale precipitation but with inadequate intensity to resolve these 
phases. Prior research on several amorphous alloys observed similar 
XRD and SAED results, identifying signatures consistent with a pre
dominantly amorphous state with dispersed crystalline regions on the 
order of several nanometers [26–28]. Therefore, both as-sputtered FeW 
compositions are classified as “X-ray amorphous” with the Fe-38 W film 
showing a higher degree of amorphization than the Fe-67 W film. 

XRD patterns for the annealed monolithic films exhibited different 

behavior for the two alloy compositions. Following heat-treatment at 
250 ◦C, the Fe-38 W XRD pattern retained its diffuse peak while the Fe- 
67 W profile contained intense peaks primarily associated with Fe7W6 
along with a small Fe2W signature. The emergence of intermetallic peaks 
combined with the absence of diffuse scattering indicates the Fe-67 W 
film completely crystallized at 250 ◦C. Within amorphous metallic al
loys, ordered regions can promote thermally induced devitrification and 
intermetallic formation [29]. The predominance of Fe7W6 is consistent 
with the Fe-W phase diagram [30], though there are uncertainties in the 
W-rich region of this system [30,31]. After heat-treatment to 500 ◦C, 
both Fe-38 W and Fe-67 W XRD plots maintained similar peak profiles 
observed at 250 ◦C, indicating no significant coarsening or phase tran
sitions. Annealing at 750 ◦C produced low-intensity peaks in the Fe-38 
W film attributed to α-Fe, α-W, Fe7W6, and Fe2W phases as indexed in 
Fig 1a, where the minor intermetallic presence is consistent with 
annealing studies of electrodeposited Fe-W alloys of similar composition 
[32]. However, convolution of these peaks with the diffuse amorphous 
signature demonstrates the Fe-38 W alloy did not completely devitrify at 
750 ◦C and instead exhibited exceptional stability relative to many bi
nary and multicomponent metallic glasses [33]. Comparatively, the 
Fe-67 W film experienced decomposition of the intermetallic phases 
(Fe7W6 and Fe2W) into a body-centered cubic (BCC) α-W solid solution 
at 750 ◦C. 

To investigate how CAIs influence microstructural stability, multi
layers comprised of repeating nanocrystalline Fe and either Fe-38 W or 

Table 1 
Sample film characteristics and labeling for both single layer and multilayer 
coatings, including coating thickness, layer and global composition, and number 
of total bilayers.  

Table 1 

Sample 
Name 

Coating 
Type 

Coating 
Thickness 
[nm] 

Layer 
1 Fe 
(20 
nm) 

Layer 
2 FeW 
(20 
nm) 

Number 
of 
Bilayers 

Global 
Fe 
Content 
[at.% 
Fe] 

Fe-38W Single 
Layer 

1000 N/A N/A N/A 62.0 at. 
% Fe 

Fe-67W Single 
Layer 

1000 N/A N/A N/A 32.8 at. 
% Fe 

Fe/Fe- 
38W 

Multilayer 1520 99.9 
at.% 
Fe 

67.2 
at.% 
Fe 

38 81.0 at. 
% Fe 

Fe/Fe- 
67W 

Multilayer 1520 99.9 
at.% 
Fe 

38.0 
at.% 
Fe 

38 66.4 at. 
% Fe  

Fig. 1. Normalized ex-situ XRD intensity profiles in a logarithmic scale of the 
as-sputtered and heat-treated temperatures for both single-layer films (a) Fe-38 
W and (b) Fe-67 W. Each intensity profile is labeled with its annealing tem
perature and crystalline peaks are indicated with respective symbols. Inset 
SAED images of each as-sputtered film show diffraction rings and diffuse halos. 
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Fe-67 W compositions, hereafter referred to as Fe/Fe-38 W and Fe/Fe- 
67 W, were synthesized through co-sputtering techniques (Table 1). 
These samples provide a CAI analogue to multilayers with crystalline- 
crystalline interfaces (CCIs), such as Mo-Au, Hf-Ti, and W-Cr, where 
microstructural transitions were impacted by excess free energy and 
pinning forces imparted by CCIs [3]. For the two NM configurations 
studied here, the global multilayer compositions notably differ from the 
monolithic amorphous counterparts, as introduction of pure Fe layers 
increases overall Fe content. Fig 2 highlights the as-sputtered NMs and 
corresponding microstructural and chemical analysis including 
high-angle annular scanning transmission electron microscopy 
(HAADF-STEM), nanobeam electron diffraction (NBED), and energy 
dispersive X-ray spectroscopy (EDX), implemented using FEI Titan 
80–200 ChemiSTEM, JEOL JEM-2100F TEM, and FEI TALOS Operando 
S/TEM microscopes all operated at 200 keV. Cross-sectional HAADF-
STEM micrographs in Fig. 2a and e reveal Fe (dark) and FeW (bright) 
layers based on the Z-contrast via high-angle scattering (semi-collection 
angle of 69 – 200 mrad). Magnified STEM micrographs are shown in 
Fig. 2b and f for Fe/Fe-38 W and Fe/Fe-67 W NMs, respectively, with 
accompanying NBED patterns from Fe (red) and FeW (blue) layers. 

NBED patterns from the Fe layer in both samples exhibit clear 

diffraction spots deriving from grains of specific crystallographic 
orientation while the FeW layers show different characteristics 
depending on the composition. For the Fe/Fe-38 W NM, diffuse halos 
and a small number of distinct diffraction spots are found in the NBED 
patterns (Fig. 2b (blue)) where FeW layers are of amorphous character 
with some possible crystallinity on the order of the beam diameter, 
about 3 nm. Conversely, for the Fe/Fe-67 W NM, the NBED pattern in 
Fig. 2f (blue) contained only subtle diffuse diffraction rings with more 
conspicuous diffraction spots, indicating the presence of more devel
oped crystallites in the Fe-67 W layers. Chemical analysis via EDX is 
presented in Figs. 2c and 2 g with labeled Fe (red)_and W (blue). These 
maps demonstrate a clear partitioning of the pure Fe and FeW layers, 
and line scans following the inscribed arrows show the Fe content 
fluctuating between 58 and 98 at.% for Fe/Fe-38 W and 32–96 at.% for 
Fe/Fe-67 W. Overall, characterization of as-sputtered NM samples 
demonstrates that the FeW layers in the Fe/Fe-38 W NMs are predom
inantly amorphous but with signatures from nanoscale crystallites, 
while the Fe/Fe-67 W NMs contained amorphous signatures with a 
higher degree of crystallinity. 

Studies on fully crystalline NMs, such as Mo-Au [16] and Cu-W [34], 
reported key stages of multilayer breakdown that involved 
diffusion-mediated processes, including grooving and pinch-off. 
Notably, several multilayer studies have focused on complex 
non-metallic amorphous layers, where higher CAI density was shown to 
lower the critical temperature for layer breakdown [35,36]. Despite 
these observations, amorphous complexions and AIFs within fully 
metallic systems (e.g., Ni-W [17] and Cu-Zr-Hf [18] alloys) preserved 
nanocrystalline stability at temperatures over 1000 ◦C. Hence, a 
comprehensive understanding of the influence and evolution of amor
phous metallic layers within multilayer structures is still limited. In this 
study, multilayer films were thermally aged at 500 ◦C where XRD results 
for monolithic amorphous-FeW samples exhibited significant differ
ences in phase stability. Organized to mirror the as-sputtered film 
analysis, Fig. 3a and e show cross-sectional HAADF-STEM micrographs 
revealing the initial laminate structure remained intact after the 500 ◦C 
heat treatment. However, layer roughening was evident in Fe/Fe-38 W 
as shown in Fig 3b and EDX map in Fig. 3c. Faint white lines also span 
across several Fe layers, possibly indicating interlayer diffusion, which 
has been observed in multilayers consisting of miscible constituents 
[37]. 

Fe-W is commonly classified as a miscible (albeit low) system [38], 
and intermetallic formation is energetically favorable as formation en
thalpies Fe-W compounds are negative [39]. Current understanding 
regarding how miscibility affects layer stability is largely based on sys
tems with elemental and solid solution layers, such as Cu-Nb [40] and 
W-Cr [41]. Yet, prediction of laminate stability is not trivial, as co
herency, grain size, homologous temperature, and composition all 
uniquely influence interface-driven mechanisms [42,43]. STEM and 
NBED images within Fig. 3b show clear diffraction spots from the Fe 
layer (red) and a diffuse ring from the Fe-38 W layer (blue), demon
strating retention of the amorphous state in the Fe-38 W phase. In 
contrast, NBED data in Fig. 3f for the Fe-67 W layer (blue) contains many 
diffraction spots indicating significant devitrification. Stability of Fe-38 
W and Fe-67 W compositions within the multilayer samples follow the 
same pattern as the single-layer samples, with Fe-38 W remaining 
amorphous after heat-treatment and Fe-67 W devitrifying. Figs. 3c and 3 
g display EDX maps of Fe (red) and W (blue) following the 500 ◦C heat 
treatment. Despite devitrification in Fe/Fe-67 W and interface blurring 
within Fe/Fe-38 W, both configurations retain distinguishable chemical 
layer interfaces. Line scan results presented in Figs. 3d and 3h reveal that 
Fe content alternates between 59 and 95 at.% for Fe/Fe-38 W and 33–91 
at.% for Fe/Fe-67 W. Differences between as-sputtered and heat-treated 
line scan data are insignificant as they fall within the error of EDX ca
pabilities, typically ±5 at.% [44]. Importantly, devitrification within 
Fe/Fe-67 W allows for the first time a direct comparison between 
laminate stability in systems containing metallic glass CAIs and 

Fig. 2. Microstructural and chemical characterization of as-sputtered (a-d) Fe- 
38 W multilayer and (e-h) Fe-67 W multilayer films. Microstructural analysis 
for both samples consists of (a,e) cross-sectional HAADF-STEM micrographs and 
(b,f) NBED scans with layer locations labeled within magnified STEM images. 
Chemical investigation consists of (c,g) EDX mapping of film cross sections with 
white arrows indicating the direction of line scans, whose data is presented in 
(d,h). Within EDX maps, red represents Fe and blue represents W. 
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multilayers containing CCIs. Thus, differences in interfacial character
istics between Fe/Fe-38 W and Fe/Fe-67 W present a unique opportunity 
to explore interface-driven mechanisms within the same system beyond 
temperatures previously studied. 

Given the onset of devitrification at 750 ◦C in the more stable Fe-38 
W monolithic amorphous film in Fig. 1a, NM samples were thermally 
aged at this temperature for 96 h. Cross-sectional HAADF micrographs 
in Fig. 4 demonstrate both films experienced complete recrystallization 
of the multilayer structure. EDX shows separation between Fe grains 
(red) and FeW intermetallic phases (blue) where α-Fe and λ-Fe2W are 
expected, per the Fe-W phase diagram [39]. Notably, the propensity for 
Fe7W6 formation as observed in the monolithic films is suppressed in the 
NM samples, since the overall Fe content is increased to where neither 
Fe7W6 nor BCC-W solution phases are expected. Counting over 75 grains 
for each sample, grain sizes for Fe and FeW-intermetallic phases within 
Fe/Fe-38 W are 240 ± 48 nm and 192 ± 47 nm respectively, whereas Fe 
and FeW-intermetallic phases within Fe/Fe-67 W are 145 ± 40 nm and 
142 ± 50 nm. Because HAADF-STEM images primarily provide 
Z-contrast, it can be difficult to clearly distinguish grain boundaries 
which likely accounts for the broad distribution of measured grain sizes. 
Although Fe/Fe-67 W displays slightly smaller Fe and intermetallic 
features relative to Fe/Fe-38 W, both annealed samples exhibit 

nanoscale features about 200–1000 nm smaller than other nano
structured ferritic and W-based alloys [45,46]. 

Prior to recrystallization, interface-driven mechanisms influencing 
layer breakdown can be inferred by comparing Figs. 3 and 4. Within 
Fig. 3, Fe/Fe-38W’s CAIs appear blurred indicating interlayer diffusion 
and mixing. Amorphous alloys have demonstrated significant excess free 
volume over crystalline counterparts, which is closely linked with 
accelerated diffusion [47]. For example, self-diffusivity in amorphous 
Fe-Zr was calculated to be 5–10 orders of magnitude larger than in 
crystalline Fe, though values are highly dependent on composition [48]. 
Thus, CAIs with miscible constituents, such as Fe and W, may be prone to 
layer breakdown via diffusion-driven interlayer mixing culminating in 
recrystallization into α-Fe and intermetallic-FeW phases. In contrast, in 
the Fe/Fe-67 W NM, the amorphous phase devitrified into Fe2W and 
Fe7W6 intermetallic phases, resulting in Fe/intermetallic-FeW CCI in
terfaces. The evolution of metal/intermetallic interfaces is largely un
derstood as a grooving mechanism, where the more thermally stable 
intermetallic layer grooves into the elemental layer leading to pinch off 

Fig. 3. Microstructural and chemical characterization of 500 ◦C treated (a-d) 
Fe-38 W multilayer and (e-h) Fe-67 W multilayer films. Microstructural analysis 
for both samples consists of (a,e) cross-sectional HAADF-STEM micrographs and 
(b,f) NBED scans with layer locations labeled within magnified STEM images. 
Chemical investigation consists of (c,g) EDX mapping of film cross sections with 
white arrows indicating the direction of line scans, whose data is presented in 
(d,h). Within EDX maps, red represents Fe and blue represents W. 

Fig. 4. Fe-38 W multilayer coatings are characterized after 750 ◦C treatment 
showing (a) a cross-sectional HAADF-STEM image and (b) EDX map displaying 
the microstructure after layer breakdown. Feature size histograms for Fe grains 
(red) and FeW-intermetallic phases (blue) are adjacent to STEM and EDX im
ages. For the Fe-67 W multilayer coating, (c) and (d) represent similar STEM 
and EDX images respectively, with similar histograms depicting the distribution 
of each feature size. Within EDX maps, red represents Fe and blue represents W. 
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[49]. Intermetallic grooving has been observed in metal/intermetallic 
laminates including Nb/Nb5Si3 [50] and Mo/MoSi2 [51]. Interfacial free 
energy has been linked with nanocrystalline laminate stability, yet grain 
boundary free energies are not readily available for many intermetallic 
compounds [49]. Layer grooving is dependent on the solidus tempera
ture of the intermetallic relative to the pure metal; solidus temperatures 
of Fe2W and Fe7W6 are both reported to be 1637 ◦C [39], about 100 ◦C 
higher than the melting temperature of iron. As a result, Fe/Fe-67 W 
likely evolved via intermetallic formation within the Fe-67 W layer 
followed by interfacial grooving leading to pinch off and coarsening. 
After recrystallization, Fe/Fe-38 W shows a higher fraction of Fe grains 
relative to Fe/Fe-67 W, which consists of smaller and more numerous 
intermetallic grains. Importantly, thermal stability studies on nano
crystalline W-based alloys identified that precipitation can inhibit grain 
growth via interface pinning [52]. Thus, smaller feature sizes within 
Fe/Fe-67 W may be attributed to pinning effects imparted by nanoscale 
intermetallics. 

Despite the differing layer breakdown mechanisms discussed, few 
microstructural differences are observed after the 750 ◦C treatment, as 
both films recrystallized into nanoscale microstructures consisting of Fe 
and Fe-W intermetallic phases. Ultimately, these findings are in contrast 
to recent work demonstrating that CAIs associated with AIFs can 
significantly improve the thermal stability of nanostructured materials 
[17,18,53]. However, direct comparison between intergranular films 
and multilayers is challenging, as CAIs’ influence on thermal stability is 
highly dependent on the shape and size of amorphous and crystalline 
phases within a nanostructured system. In addition, AIFs and complex
ions were purported to be in thermal equilibrium with neighboring 
grains, whereas the co-sputtered amorphous-FeW phases in this study 
are metastable. Nevertheless, our results demonstrate that nano
multilayers can be tailored to serve as candidate systems for investi
gating interfacial characteristics such as CAIs and their influence on 
nanoscale stability for extreme environments. 
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