001025926 001__ 1025926
001025926 005__ 20250204113850.0
001025926 0247_ $$2doi$$a10.1021/acsami.3c19386
001025926 0247_ $$2ISSN$$a1944-8244
001025926 0247_ $$2ISSN$$a1944-8252
001025926 0247_ $$2pmid$$a38606845
001025926 0247_ $$2WOS$$aWOS:001203989600001
001025926 037__ $$aFZJ-2024-03204
001025926 082__ $$a600
001025926 1001_ $$aMengesha, Tadesu Hailu$$b0
001025926 245__ $$aConcerted Effect of Ion- and Electron-Conductive Additives on the Electrochemical and Thermal Performances of the LiNi 0.8 Co 0.1 Mn 0.1 O 2 Cathode Material Synthesized by a Taylor-Flow Reactor for Lithium-Ion Batteries
001025926 260__ $$aWashington, DC$$bSoc.$$c2024
001025926 3367_ $$2DRIVER$$aarticle
001025926 3367_ $$2DataCite$$aOutput Types/Journal article
001025926 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1714741320_14092
001025926 3367_ $$2BibTeX$$aARTICLE
001025926 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001025926 3367_ $$00$$2EndNote$$aJournal Article
001025926 520__ $$aTo address the issue that a single coating agent cannot simultaneously enhance Li+-ion transport and electronic conductivity of Ni-rich cathode materials with surface modification, in the present study, we first successfully synthesized a LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode material by a Taylor-flow reactor followed by surface coating with Li-BTJ and dispersion of vapor-grown carbon fibers treated with polydopamine (PDA-VGCF) filler in the composite slurry. The Li-BTJ hybrid oligomer coating can suppress side reactions and enhance ionic conductivity, and the PDA-VGCFs filler can increase electronic conductivity. As a result of the synergistic effect of the dual conducting agents, the cells based on the modified NCM811 electrodes deliver superior cycling stability and rate capability, as compared to the bare NCM811 electrode. The CR2032 coin-type cells with the NCM811@Li-BTJ + PDA-VGCF electrode retain a discharge specific capacity of ∼92.2% at 1C after 200 cycles between 2.8 and 4.3 V (vs Li/Li+), while bare NCM811 retains only 84.0%. Moreover, the NCM811@Li-BTJ + PDA-VGCF electrode-based cells reduced the total heat (Qt) by ca. 7.0% at 35 °C over the bare electrode. Remarkably, the Li-BTJ hybrid oligomer coating on the surface of the NCM811 active particles acts as an artificial cathode electrolyte interphase (ACEI) layer, mitigating irreversible surface phase transformation of the layered NCM811 cathode and facilitating Li+ ion transport. Meanwhile, the fiber-shaped PDA-VGCF filler significantly reduced microcrack propagation during cycling and promoted the electronic conductance of the NCM811-based electrode. Generally, enlightened with the current experimental findings, the concerted ion and electron conductive agents significantly enhanced the Ni-rich cathode-based cell performance, which is a promising strategy to apply to other Ni-rich cathode materials for lithium-ion batteries.
001025926 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001025926 536__ $$0G:(BMBF)13XP0304A$$aLiBEST2 - Lithium-Batterie-Konzepte mit hoher Energiedichte, Leistung und Sicherheit (13XP0304A)$$c13XP0304A$$x1
001025926 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001025926 7001_ $$aJeyakumar, Juliya$$b1
001025926 7001_ $$aHendri, Yola Bertilsya$$b2
001025926 7001_ $$aWu, Yi-Shiuan$$b3
001025926 7001_ $$00000-0002-3832-9800$$aYang, Chun-Chen$$b4
001025926 7001_ $$00000-0001-8506-9397$$aPham, Quoc-Thai$$b5
001025926 7001_ $$aChern, Chorng-Shyan$$b6
001025926 7001_ $$0P:(DE-Juel1)172047$$aBrunklaus, Gunther$$b7
001025926 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b8$$ufzj
001025926 7001_ $$aHwang, Bing Joe$$b9
001025926 773__ $$0PERI:(DE-600)2467494-1$$a10.1021/acsami.3c19386$$gp. acsami.3c19386$$n16$$p21034–21049$$tACS applied materials & interfaces$$v16$$x1944-8244$$y2024
001025926 909CO $$ooai:juser.fz-juelich.de:1025926$$pVDB
001025926 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172047$$aForschungszentrum Jülich$$b7$$kFZJ
001025926 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b8$$kFZJ
001025926 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001025926 9141_ $$y2024
001025926 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-25
001025926 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-25
001025926 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS APPL MATER INTER : 2022$$d2024-12-13
001025926 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-13
001025926 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-13
001025926 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-13
001025926 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-13
001025926 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-13
001025926 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-13
001025926 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS APPL MATER INTER : 2022$$d2024-12-13
001025926 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001025926 980__ $$ajournal
001025926 980__ $$aVDB
001025926 980__ $$aI:(DE-Juel1)IEK-12-20141217
001025926 980__ $$aUNRESTRICTED
001025926 981__ $$aI:(DE-Juel1)IMD-4-20141217