001     1025930
005     20250203103320.0
024 7 _ |a 10.1002/batt.202200464
|2 doi
024 7 _ |a 10.34734/FZJ-2024-03208
|2 datacite_doi
024 7 _ |a WOS:000905832600001
|2 WOS
037 _ _ |a FZJ-2024-03208
082 _ _ |a 540
100 1 _ |a Desmaizieres, Gauthier
|0 0000-0001-7728-656X
|b 0
245 _ _ |a Evaluating the Polymer Backbone – Vinylene versus Styrene – of Anisyl‐substituted Phenothiazines as Battery Electrode Materials
260 _ _ |a Weinheim
|c 2023
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1714737081_16021
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Organic electrode materials are capable candidates for next-generation greener energy storage solutions. One advantage is that their electrochemical performance can be tuned by structural modification. We herein investigate anisyl-substituted poly(vinyl-) and poly(styrylphenothiazines) as positive electrode materials for dual-ion batteries. π-Interactions – characteristic to phenothiazine redox polymers – are facilitated in the poly(styrene) derivatives PSAPT and PSAPT-X-DVB due to the longer spacing between phenothiazine units and polymer backbone and lead to high cycling stabilities, but reduce their specific capacities. In the poly(vinylenes), the linear PVAPT shows high cycling stability but a dissolution/redeposition mechanism, diminishing its capacity, while the cross-linked X-PVAPT demonstrates high cycling stabilities at specific capacities up to 81 mAh g−1 paired with an excellent rate performance, where 10,000 cycles at 100 C rate proceed with 86 % capacity retention.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
536 _ _ |a DFG project 230408635 - Entwicklung organischer Materialien zur Energiespeicherung, für elektrooptische Anwendungen und als Template für neuartige Nanoröhren (230408635)
|0 G:(GEPRIS)230408635
|c 230408635
|x 1
536 _ _ |a DFG project 398214985 - Heteroaromatische Redoxpolymere für Lithium-/organische Batterien (HALO) (398214985)
|0 G:(GEPRIS)398214985
|c 398214985
|x 2
536 _ _ |a DFG project 390874152 - EXC 2154: POLiS - Post Lithium Storage Cluster of Excellence (390874152)
|0 G:(GEPRIS)390874152
|c 390874152
|x 3
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Perner, Verena
|0 0000-0003-2013-9432
|b 1
700 1 _ |a Wassy, Daniel
|0 0000-0002-8196-9926
|b 2
700 1 _ |a Kolek, Martin
|0 0000-0001-7852-4064
|b 3
700 1 _ |a Bieker, Peter
|0 P:(DE-Juel1)180777
|b 4
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 5
|u fzj
700 1 _ |a Esser, Birgit
|0 0000-0002-2430-1380
|b 6
773 _ _ |a 10.1002/batt.202200464
|g Vol. 6, no. 2, p. e202200464
|0 PERI:(DE-600)2897248-X
|n 2
|p e202200464
|t Batteries & supercaps
|v 6
|y 2023
|x 2566-6223
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1025930/files/Batteries%20Supercaps%20-%202022%20-%20Desmaizieres%20-%20Evaluating%20the%20Polymer%20Backbone%20Vinylene%20versus%20Styrene%20of.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1025930/files/Batteries%20Supercaps%20-%202022%20-%20Desmaizieres%20-%20Evaluating%20the%20Polymer%20Backbone%20Vinylene%20versus%20Styrene%20of.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1025930/files/Batteries%20Supercaps%20-%202022%20-%20Desmaizieres%20-%20Evaluating%20the%20Polymer%20Backbone%20Vinylene%20versus%20Styrene%20of.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1025930/files/Batteries%20Supercaps%20-%202022%20-%20Desmaizieres%20-%20Evaluating%20the%20Polymer%20Backbone%20Vinylene%20versus%20Styrene%20of.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1025930/files/Batteries%20Supercaps%20-%202022%20-%20Desmaizieres%20-%20Evaluating%20the%20Polymer%20Backbone%20Vinylene%20versus%20Styrene%20of.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1025930
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)180777
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)166130
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-25
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BATTERIES SUPERCAPS : 2022
|d 2023-08-25
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b BATTERIES SUPERCAPS : 2022
|d 2023-08-25
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2023-08-25
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-25
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
|0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-25
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-25
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21