001025931 001__ 1025931 001025931 005__ 20240712113129.0 001025931 0247_ $$2doi$$a10.1021/acsaem.2c02755 001025931 0247_ $$2WOS$$aWOS:000880839400001 001025931 037__ $$aFZJ-2024-03209 001025931 082__ $$a540 001025931 1001_ $$0P:(DE-HGF)0$$aIbing, Lukas$$b0 001025931 245__ $$aMaking Aqueously Processed LiNi 0.5 Mn 0.3 Co 0.2 O 2 -Based Electrodes Competitive in Performance: Tailoring Distribution and Interconnection of Active and Inactive Electrode Materials through Paste Surfactants 001025931 260__ $$aWashington, DC$$bACS Publications$$c2022 001025931 3367_ $$2DRIVER$$aarticle 001025931 3367_ $$2DataCite$$aOutput Types/Journal article 001025931 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1714724793_30347 001025931 3367_ $$2BibTeX$$aARTICLE 001025931 3367_ $$2ORCID$$aJOURNAL_ARTICLE 001025931 3367_ $$00$$2EndNote$$aJournal Article 001025931 520__ $$aEnabling aqueous processing of positive active materials to replace toxicologically critical N-methyl-2-pyrrolidone could significantly reduce the ecologic and economic footprint of lithium ion battery production. Processing additives are key to elevate the performance of aqueously processed electrodes beyond the state of the art. A mostly neglected factor during aqueous processing is electrostatic repulsion of active/inactive materials due to their ζ potentials, which can be compensated for by applying optimized amounts of surfactants like hexadecyltrimethylammonium bromide. The notably improved distribution and interconnection of active/inactive materials lead to superior rate capability and similar capacity retention during long-term cycling compared to state-of-the-art processing. 001025931 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0 001025931 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 001025931 7001_ $$0P:(DE-HGF)0$$aGallasch, Tobias$$b1 001025931 7001_ $$0P:(DE-HGF)0$$aGöken, Vinzenz$$b2 001025931 7001_ $$00000-0001-8892-8978$$aNiehoff, Philip$$b3 001025931 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b4$$ufzj 001025931 7001_ $$00000-0002-8468-773X$$aBörner, Markus$$b5 001025931 773__ $$0PERI:(DE-600)2916551-9$$a10.1021/acsaem.2c02755$$gVol. 5, no. 11, p. 13155 - 13160$$n11$$p13155 - 13160$$tACS applied energy materials$$v5$$x2574-0962$$y2022 001025931 8564_ $$uhttps://juser.fz-juelich.de/record/1025931/files/ibing-et-al-2022-making-aqueously-processed-lini0-5mn0-3co0-2o2-based-electrodes-competitive-in-performance-tailoring.pdf$$yRestricted 001025931 8564_ $$uhttps://juser.fz-juelich.de/record/1025931/files/ibing-et-al-2022-making-aqueously-processed-lini0-5mn0-3co0-2o2-based-electrodes-competitive-in-performance-tailoring.gif?subformat=icon$$xicon$$yRestricted 001025931 8564_ $$uhttps://juser.fz-juelich.de/record/1025931/files/ibing-et-al-2022-making-aqueously-processed-lini0-5mn0-3co0-2o2-based-electrodes-competitive-in-performance-tailoring.jpg?subformat=icon-1440$$xicon-1440$$yRestricted 001025931 8564_ $$uhttps://juser.fz-juelich.de/record/1025931/files/ibing-et-al-2022-making-aqueously-processed-lini0-5mn0-3co0-2o2-based-electrodes-competitive-in-performance-tailoring.jpg?subformat=icon-180$$xicon-180$$yRestricted 001025931 8564_ $$uhttps://juser.fz-juelich.de/record/1025931/files/ibing-et-al-2022-making-aqueously-processed-lini0-5mn0-3co0-2o2-based-electrodes-competitive-in-performance-tailoring.jpg?subformat=icon-640$$xicon-640$$yRestricted 001025931 909CO $$ooai:juser.fz-juelich.de:1025931$$pVDB 001025931 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b4$$kFZJ 001025931 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0 001025931 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS APPL ENERG MATER : 2022$$d2023-08-25 001025931 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-25 001025931 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-25 001025931 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-25 001025931 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-25 001025931 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-25 001025931 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-25 001025931 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-08-25 001025931 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-25 001025931 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS APPL ENERG MATER : 2022$$d2023-08-25 001025931 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0 001025931 980__ $$ajournal 001025931 980__ $$aVDB 001025931 980__ $$aI:(DE-Juel1)IEK-12-20141217 001025931 980__ $$aUNRESTRICTED 001025931 981__ $$aI:(DE-Juel1)IMD-4-20141217