001     1025931
005     20240712113129.0
024 7 _ |a 10.1021/acsaem.2c02755
|2 doi
024 7 _ |a WOS:000880839400001
|2 WOS
037 _ _ |a FZJ-2024-03209
082 _ _ |a 540
100 1 _ |a Ibing, Lukas
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Making Aqueously Processed LiNi 0.5 Mn 0.3 Co 0.2 O 2 -Based Electrodes Competitive in Performance: Tailoring Distribution and Interconnection of Active and Inactive Electrode Materials through Paste Surfactants
260 _ _ |a Washington, DC
|c 2022
|b ACS Publications
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1714724793_30347
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Enabling aqueous processing of positive active materials to replace toxicologically critical N-methyl-2-pyrrolidone could significantly reduce the ecologic and economic footprint of lithium ion battery production. Processing additives are key to elevate the performance of aqueously processed electrodes beyond the state of the art. A mostly neglected factor during aqueous processing is electrostatic repulsion of active/inactive materials due to their ζ potentials, which can be compensated for by applying optimized amounts of surfactants like hexadecyltrimethylammonium bromide. The notably improved distribution and interconnection of active/inactive materials lead to superior rate capability and similar capacity retention during long-term cycling compared to state-of-the-art processing.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Gallasch, Tobias
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Göken, Vinzenz
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Niehoff, Philip
|0 0000-0001-8892-8978
|b 3
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 4
|u fzj
700 1 _ |a Börner, Markus
|0 0000-0002-8468-773X
|b 5
773 _ _ |a 10.1021/acsaem.2c02755
|g Vol. 5, no. 11, p. 13155 - 13160
|0 PERI:(DE-600)2916551-9
|n 11
|p 13155 - 13160
|t ACS applied energy materials
|v 5
|y 2022
|x 2574-0962
856 4 _ |u https://juser.fz-juelich.de/record/1025931/files/ibing-et-al-2022-making-aqueously-processed-lini0-5mn0-3co0-2o2-based-electrodes-competitive-in-performance-tailoring.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1025931/files/ibing-et-al-2022-making-aqueously-processed-lini0-5mn0-3co0-2o2-based-electrodes-competitive-in-performance-tailoring.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1025931/files/ibing-et-al-2022-making-aqueously-processed-lini0-5mn0-3co0-2o2-based-electrodes-competitive-in-performance-tailoring.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1025931/files/ibing-et-al-2022-making-aqueously-processed-lini0-5mn0-3co0-2o2-based-electrodes-competitive-in-performance-tailoring.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1025931/files/ibing-et-al-2022-making-aqueously-processed-lini0-5mn0-3co0-2o2-based-electrodes-competitive-in-performance-tailoring.jpg?subformat=icon-640
|x icon-640
|y Restricted
909 C O |o oai:juser.fz-juelich.de:1025931
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)166130
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS APPL ENERG MATER : 2022
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-25
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-25
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACS APPL ENERG MATER : 2022
|d 2023-08-25
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21