001     1025932
005     20240712113129.0
024 7 _ |a 10.1149/1945-7111/aca2e8
|2 doi
024 7 _ |a 0013-4651
|2 ISSN
024 7 _ |a 0096-4743
|2 ISSN
024 7 _ |a 0096-4786
|2 ISSN
024 7 _ |a 1945-6859
|2 ISSN
024 7 _ |a 1945-7111
|2 ISSN
024 7 _ |a 2156-7395
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-03210
|2 datacite_doi
024 7 _ |a WOS:000889361400001
|2 WOS
037 _ _ |a FZJ-2024-03210
082 _ _ |a 660
100 1 _ |a Kubot, Maximilian
|b 0
245 _ _ |a Organofluorophosphates as Oxidative Degradation Products in High-Voltage Lithium Ion Batteries with NMC or LNMO Cathodes
260 _ _ |a Bristol
|c 2022
|b IOP Publishing
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1714757943_14092
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Organofluorophosphates (OFPs) have been reported to pose substantial health hazards due to their structural similarities to pesticides and nerve agents. Formation of OFPs in lithium ion batteries (LIBs) due to hydrolysis of the conducting salt lithium hexafluorophosphate (LiPF6) and the reaction with the organic carbonate solvents that make up the electrolyte has been discussed in literature. The oxidative formation of OFPs in electrolytes containing fluoroethylene carbonate (FEC) and vinylene carbonate (VC) as film-forming additives is presented in this study. Further the impact of potentially reactive positive electrode surfaces is investigated with the layered metal oxide NCM622 which is ascribed to release reactive oxygen species at high voltages and the spinel type LNMO as a typical high-voltage material. Cycling of the self-assembled LIB coin cells (CR2032) at cut-off voltages of 4.8 V gave rise to a number of degradation products including potentially highly toxic OFPs. Here, the presence of the film-forming additive had a massive impact on the amount of OFPs formed during electrochemical cycling experiments, which raises further concerns for the utilization of film-forming additives for high voltage applications. The formation pathway of OFPs through EC-polymerization proposed in literature is evaluated and an alternative mechanism with FEC/VC as the carbonyl carbon-donor is presented. Structure elucidation and separation of the formed OFPs is achieved by utilization of reversed-phase (RP) chromatography hyphenated to a high-resolution ion trap time-of-flight mass spectrometer (IT-TOF-MS). The findings presented in this study support further investigation of the formation of OFPs in film-forming additive-containing electrolytes, quantitative approaches and toxicological assessments due to the highly toxic nature of OFPs.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
536 _ _ |a BMBF 03XP0311B - BatgasMod - Batteriegasungs-Modellierung (03XP0311B)
|0 G:(BMBF)03XP0311B
|c 03XP0311B
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a von Holtum, Bastian
|b 1
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 2
|u fzj
700 1 _ |a Wiemers-Meyer, Simon
|b 3
700 1 _ |a Nowak, Sascha
|0 0000-0003-1508-6073
|b 4
773 _ _ |a 10.1149/1945-7111/aca2e8
|g Vol. 169, no. 11, p. 110534 -
|0 PERI:(DE-600)2002179-3
|n 11
|p 110534 -
|t Journal of the Electrochemical Society
|v 169
|y 2022
|x 0013-4651
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1025932/files/Kubot_2022_J._Electrochem._Soc._169_110534.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1025932/files/Kubot_2022_J._Electrochem._Soc._169_110534.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1025932/files/Kubot_2022_J._Electrochem._Soc._169_110534.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1025932/files/Kubot_2022_J._Electrochem._Soc._169_110534.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1025932/files/Kubot_2022_J._Electrochem._Soc._169_110534.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1025932
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)166130
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-10-22
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-22
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-22
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-22
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J ELECTROCHEM SOC : 2022
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-22
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21