001025973 001__ 1025973
001025973 005__ 20250203103323.0
001025973 0247_ $$2doi$$a10.3389/fninf.2023.1272243
001025973 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-03250
001025973 0247_ $$2pmid$$a38107469
001025973 0247_ $$2WOS$$aWOS:001124542000001
001025973 037__ $$aFZJ-2024-03250
001025973 082__ $$a610
001025973 1001_ $$0P:(DE-HGF)0$$aTimonidis, Nestor$$b0$$eCorresponding author
001025973 245__ $$aTranslating single-neuron axonal reconstructions into meso-scale connectivity statistics in the mouse somatosensory thalamus
001025973 260__ $$aLausanne$$bFrontiers Research Foundation$$c2023
001025973 3367_ $$2DRIVER$$aarticle
001025973 3367_ $$2DataCite$$aOutput Types/Journal article
001025973 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1721134784_10767
001025973 3367_ $$2BibTeX$$aARTICLE
001025973 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001025973 3367_ $$00$$2EndNote$$aJournal Article
001025973 520__ $$aCharacterizing the connectomic and morphological diversity of thalamic neurons is key for better understanding how the thalamus relays sensory inputs to the cortex. The recent public release of complete single-neuron morphological reconstructions enables the analysis of previously inaccessible connectivity patterns from individual neurons. Here we focus on the Ventral Posteromedial (VPM) nucleus and characterize the full diversity of 257 VPM neurons, obtained by combining data from the MouseLight and Braintell projects. Neurons were clustered according to their most dominantly targeted cortical area and further subdivided by their jointly targeted areas. We obtained a 2D embedding of morphological diversity using the dissimilarity between all pairs of axonal trees. The curved shape of the embedding allowed us to characterize neurons by a 1-dimensional coordinate. The coordinate values were aligned both with the progression of soma position along the dorsal-ventral and lateral-medial axes and with that of axonal terminals along the posterior-anterior and medial-lateral axes, as well as with an increase in the number of branching points, distance from soma and branching width. Taken together, we have developed a novel workflow for linking three challenging aspects of connectomics, namely the topography, higher order connectivity patterns and morphological diversity, with VPM as a test-case. The workflow is linked to a unified access portal that contains the morphologies and integrated with 2D cortical flatmap and subcortical visualization tools. The workflow and resulting processed data have been made available in Python, and can thus be used for modeling and experimentally validating new hypotheses on thalamocortical connectivity.
001025973 536__ $$0G:(DE-HGF)POF4-5231$$a5231 - Neuroscientific Foundations (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001025973 536__ $$0G:(EU-Grant)FLAG – ERA JTC 2019$$aNeuronsReunited - Neurons reunited: data and software to reconstruct long-range projection neurons from brain tissue, place them in a digital reference brain with high precision, and model their interactions (FLAG – ERA JTC 2019)$$cFLAG – ERA JTC 2019$$x1
001025973 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x2
001025973 536__ $$0G:(GEPRIS)491111487$$aDFG project 491111487 - Open-Access-Publikationskosten / 2022 - 2024 / Forschungszentrum Jülich (OAPKFZJ) (491111487)$$c491111487$$x3
001025973 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001025973 7001_ $$0P:(DE-Juel1)145578$$aBakker, Rembrandt$$b1
001025973 7001_ $$0P:(DE-HGF)0$$aRubio-Teves, Mario$$b2
001025973 7001_ $$0P:(DE-HGF)0$$aAlonso-Martínez, Carmen$$b3
001025973 7001_ $$0P:(DE-HGF)0$$aGarcia-Amado, Maria$$b4
001025973 7001_ $$0P:(DE-HGF)0$$aClascá, Francisco$$b5
001025973 7001_ $$0P:(DE-HGF)0$$aTiesinga, Paul H. E.$$b6
001025973 773__ $$0PERI:(DE-600)2452979-5$$a10.3389/fninf.2023.1272243$$gVol. 17, p. 1272243$$p1272243$$tFrontiers in neuroinformatics$$v17$$x1662-5196$$y2023
001025973 8564_ $$uhttps://juser.fz-juelich.de/record/1025973/files/fninf-17-1272243.pdf$$yOpenAccess
001025973 8564_ $$uhttps://juser.fz-juelich.de/record/1025973/files/fninf-17-1272243.gif?subformat=icon$$xicon$$yOpenAccess
001025973 8564_ $$uhttps://juser.fz-juelich.de/record/1025973/files/fninf-17-1272243.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001025973 8564_ $$uhttps://juser.fz-juelich.de/record/1025973/files/fninf-17-1272243.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001025973 8564_ $$uhttps://juser.fz-juelich.de/record/1025973/files/fninf-17-1272243.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001025973 909CO $$ooai:juser.fz-juelich.de:1025973$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
001025973 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145578$$aForschungszentrum Jülich$$b1$$kFZJ
001025973 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5231$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001025973 9141_ $$y2024
001025973 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-23
001025973 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-23
001025973 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-23
001025973 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-23
001025973 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001025973 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT NEUROINFORM : 2022$$d2023-08-23
001025973 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-11T13:08:14Z
001025973 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-11T13:08:14Z
001025973 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-23
001025973 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-08-23
001025973 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-23
001025973 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2023-08-23
001025973 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001025973 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2021-05-11T13:08:14Z
001025973 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-08-23
001025973 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-23
001025973 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-23
001025973 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-08-23
001025973 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-23
001025973 920__ $$lyes
001025973 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lComputational and Systems Neuroscience$$x0
001025973 980__ $$ajournal
001025973 980__ $$aVDB
001025973 980__ $$aUNRESTRICTED
001025973 980__ $$aI:(DE-Juel1)IAS-6-20130828
001025973 9801_ $$aFullTexts