001026013 001__ 1026013
001026013 005__ 20250204113852.0
001026013 0247_ $$2doi$$a10.1016/j.jcrc.2024.154795
001026013 0247_ $$2ISSN$$a0883-9441
001026013 0247_ $$2ISSN$$a1557-8615
001026013 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-03269
001026013 0247_ $$2pmid$$a38531748
001026013 0247_ $$2WOS$$aWOS:001247466600001
001026013 037__ $$aFZJ-2024-03269
001026013 082__ $$a610
001026013 1001_ $$0P:(DE-Juel1)185651$$aFritsch, Sebastian Johannes$$b0$$eCorresponding author$$ufzj
001026013 245__ $$aDevelopment of a machine learning model for prediction of the duration of unassisted spontaneous breathing in patients during prolonged weaning from mechanical ventilation
001026013 260__ $$aAmsterdam$$bElsevier$$c2024
001026013 3367_ $$2DRIVER$$aarticle
001026013 3367_ $$2DataCite$$aOutput Types/Journal article
001026013 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1718007607_27220
001026013 3367_ $$2BibTeX$$aARTICLE
001026013 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001026013 3367_ $$00$$2EndNote$$aJournal Article
001026013 520__ $$aPurpose: Treatment of patients undergoing prolonged weaning from mechanical ventilation includes repeated spontaneous breathing trials (SBTs) without respiratory support, whose duration must be balanced critically to prevent over- and underload of respiratory musculature. This study aimed to develop a machine learning model to predict the duration of unassisted spontaneous breathing. Materials and methods: Structured clinical data of patients from a specialized weaning unit were used to develop (1) a classifier model to qualitatively predict an increase of duration, (2) a regressor model to quantitatively predict the precise duration of SBTs on the next day, and (3) the duration difference between the current and following day. 61 features, known to influence weaning, were included into a Histogram-based gradient boosting model. The models were trained and evaluated using separated data sets. Results: 18.948 patient-days from 1018 individual patients were included. The classifier model yielded an ROC-AUC of 0.713. The regressor models displayed a mean absolute error of 2:50 h for prediction of absolute durations and 2:47 h for day-to-day difference. Conclusions: The developed machine learning model showed informed results when predicting the spontaneous breathing capacity of a patient in prolonged weaning, however lacking prognostic quality required for direct translation to clinical use.
001026013 536__ $$0G:(DE-HGF)POF4-5112$$a5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001026013 536__ $$0G:(BMBF)01IS22095D$$aSDI-S - SDI-S: Smart Data Innovation Services - Experimentelle Erprobung und Entwicklung von KI-Dienstverbünden für Innovationen auf industriellen Daten (01IS22095D)$$c01IS22095D$$x1
001026013 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001026013 7001_ $$0P:(DE-Juel1)132239$$aRiedel, Morris$$b1$$ufzj
001026013 7001_ $$0P:(DE-HGF)0$$aMarx, Gernot$$b2
001026013 7001_ $$0P:(DE-HGF)0$$aBickenbach, Johannes$$b3
001026013 7001_ $$0P:(DE-HGF)0$$aSchuppert, Andreas$$b4
001026013 773__ $$0PERI:(DE-600)2041640-4$$a10.1016/j.jcrc.2024.154795$$gp. 154795 -$$p154795$$tJournal of critical care$$v82$$x0883-9441$$y2024
001026013 8564_ $$uhttps://juser.fz-juelich.de/record/1026013/files/1-s2.0-S088394412400282X-main.pdf$$yOpenAccess
001026013 8564_ $$uhttps://juser.fz-juelich.de/record/1026013/files/1-s2.0-S088394412400282X-main.gif?subformat=icon$$xicon$$yOpenAccess
001026013 8564_ $$uhttps://juser.fz-juelich.de/record/1026013/files/1-s2.0-S088394412400282X-main.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001026013 8564_ $$uhttps://juser.fz-juelich.de/record/1026013/files/1-s2.0-S088394412400282X-main.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001026013 8564_ $$uhttps://juser.fz-juelich.de/record/1026013/files/1-s2.0-S088394412400282X-main.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001026013 8767_ $$d2024-06-10$$eHybrid-OA$$jDEAL
001026013 909CO $$ooai:juser.fz-juelich.de:1026013$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
001026013 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185651$$aForschungszentrum Jülich$$b0$$kFZJ
001026013 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132239$$aForschungszentrum Jülich$$b1$$kFZJ
001026013 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5112$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001026013 9141_ $$y2024
001026013 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001026013 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001026013 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001026013 915pc $$0PC:(DE-HGF)0125$$2APC$$aDEAL: Elsevier 09/01/2023
001026013 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-24
001026013 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001026013 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-24
001026013 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001026013 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-09$$wger
001026013 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CRIT CARE : 2022$$d2024-12-09
001026013 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-09
001026013 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-09
001026013 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-09
001026013 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2024-12-09
001026013 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-09
001026013 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-09
001026013 920__ $$lno
001026013 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001026013 9201_ $$0I:(DE-Juel1)CASA-20230315$$kCASA$$lCenter for Advanced Simulation and Analytics$$x1
001026013 980__ $$ajournal
001026013 980__ $$aVDB
001026013 980__ $$aUNRESTRICTED
001026013 980__ $$aI:(DE-Juel1)JSC-20090406
001026013 980__ $$aI:(DE-Juel1)CASA-20230315
001026013 980__ $$aAPC
001026013 9801_ $$aAPC
001026013 9801_ $$aFullTexts