001 | 1026013 | ||
005 | 20250204113852.0 | ||
024 | 7 | _ | |a 10.1016/j.jcrc.2024.154795 |2 doi |
024 | 7 | _ | |a 0883-9441 |2 ISSN |
024 | 7 | _ | |a 1557-8615 |2 ISSN |
024 | 7 | _ | |a 10.34734/FZJ-2024-03269 |2 datacite_doi |
024 | 7 | _ | |a 38531748 |2 pmid |
024 | 7 | _ | |a WOS:001247466600001 |2 WOS |
037 | _ | _ | |a FZJ-2024-03269 |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Fritsch, Sebastian Johannes |0 P:(DE-Juel1)185651 |b 0 |e Corresponding author |u fzj |
245 | _ | _ | |a Development of a machine learning model for prediction of the duration of unassisted spontaneous breathing in patients during prolonged weaning from mechanical ventilation |
260 | _ | _ | |a Amsterdam |c 2024 |b Elsevier |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1718007607_27220 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Purpose: Treatment of patients undergoing prolonged weaning from mechanical ventilation includes repeated spontaneous breathing trials (SBTs) without respiratory support, whose duration must be balanced critically to prevent over- and underload of respiratory musculature. This study aimed to develop a machine learning model to predict the duration of unassisted spontaneous breathing. Materials and methods: Structured clinical data of patients from a specialized weaning unit were used to develop (1) a classifier model to qualitatively predict an increase of duration, (2) a regressor model to quantitatively predict the precise duration of SBTs on the next day, and (3) the duration difference between the current and following day. 61 features, known to influence weaning, were included into a Histogram-based gradient boosting model. The models were trained and evaluated using separated data sets. Results: 18.948 patient-days from 1018 individual patients were included. The classifier model yielded an ROC-AUC of 0.713. The regressor models displayed a mean absolute error of 2:50 h for prediction of absolute durations and 2:47 h for day-to-day difference. Conclusions: The developed machine learning model showed informed results when predicting the spontaneous breathing capacity of a patient in prolonged weaning, however lacking prognostic quality required for direct translation to clinical use. |
536 | _ | _ | |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5112 |c POF4-511 |f POF IV |x 0 |
536 | _ | _ | |a SDI-S - SDI-S: Smart Data Innovation Services - Experimentelle Erprobung und Entwicklung von KI-Dienstverbünden für Innovationen auf industriellen Daten (01IS22095D) |0 G:(BMBF)01IS22095D |c 01IS22095D |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Riedel, Morris |0 P:(DE-Juel1)132239 |b 1 |u fzj |
700 | 1 | _ | |a Marx, Gernot |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Bickenbach, Johannes |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Schuppert, Andreas |0 P:(DE-HGF)0 |b 4 |
773 | _ | _ | |a 10.1016/j.jcrc.2024.154795 |g p. 154795 - |0 PERI:(DE-600)2041640-4 |p 154795 |t Journal of critical care |v 82 |y 2024 |x 0883-9441 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1026013/files/1-s2.0-S088394412400282X-main.pdf |
856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/1026013/files/1-s2.0-S088394412400282X-main.gif?subformat=icon |
856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/1026013/files/1-s2.0-S088394412400282X-main.jpg?subformat=icon-1440 |
856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/1026013/files/1-s2.0-S088394412400282X-main.jpg?subformat=icon-180 |
856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/1026013/files/1-s2.0-S088394412400282X-main.jpg?subformat=icon-640 |
909 | C | O | |o oai:juser.fz-juelich.de:1026013 |p openaire |p open_access |p OpenAPC_DEAL |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)185651 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)132239 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5112 |x 0 |
914 | 1 | _ | |y 2024 |
915 | p | c | |a APC keys set |0 PC:(DE-HGF)0000 |2 APC |
915 | p | c | |a Local Funding |0 PC:(DE-HGF)0001 |2 APC |
915 | p | c | |a DFG OA Publikationskosten |0 PC:(DE-HGF)0002 |2 APC |
915 | p | c | |a DEAL: Elsevier 09/01/2023 |0 PC:(DE-HGF)0125 |2 APC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-24 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-24 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2024-12-09 |w ger |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J CRIT CARE : 2022 |d 2024-12-09 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-09 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-09 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-09 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1110 |2 StatID |b Current Contents - Clinical Medicine |d 2024-12-09 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-09 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2024-12-09 |
920 | _ | _ | |l no |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)CASA-20230315 |k CASA |l Center for Advanced Simulation and Analytics |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | _ | _ | |a I:(DE-Juel1)CASA-20230315 |
980 | _ | _ | |a APC |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|