001     1026013
005     20250204113852.0
024 7 _ |a 10.1016/j.jcrc.2024.154795
|2 doi
024 7 _ |a 0883-9441
|2 ISSN
024 7 _ |a 1557-8615
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-03269
|2 datacite_doi
024 7 _ |a 38531748
|2 pmid
024 7 _ |a WOS:001247466600001
|2 WOS
037 _ _ |a FZJ-2024-03269
082 _ _ |a 610
100 1 _ |a Fritsch, Sebastian Johannes
|0 P:(DE-Juel1)185651
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Development of a machine learning model for prediction of the duration of unassisted spontaneous breathing in patients during prolonged weaning from mechanical ventilation
260 _ _ |a Amsterdam
|c 2024
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1718007607_27220
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Purpose: Treatment of patients undergoing prolonged weaning from mechanical ventilation includes repeated spontaneous breathing trials (SBTs) without respiratory support, whose duration must be balanced critically to prevent over- and underload of respiratory musculature. This study aimed to develop a machine learning model to predict the duration of unassisted spontaneous breathing. Materials and methods: Structured clinical data of patients from a specialized weaning unit were used to develop (1) a classifier model to qualitatively predict an increase of duration, (2) a regressor model to quantitatively predict the precise duration of SBTs on the next day, and (3) the duration difference between the current and following day. 61 features, known to influence weaning, were included into a Histogram-based gradient boosting model. The models were trained and evaluated using separated data sets. Results: 18.948 patient-days from 1018 individual patients were included. The classifier model yielded an ROC-AUC of 0.713. The regressor models displayed a mean absolute error of 2:50 h for prediction of absolute durations and 2:47 h for day-to-day difference. Conclusions: The developed machine learning model showed informed results when predicting the spontaneous breathing capacity of a patient in prolonged weaning, however lacking prognostic quality required for direct translation to clinical use.
536 _ _ |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5112
|c POF4-511
|f POF IV
|x 0
536 _ _ |a SDI-S - SDI-S: Smart Data Innovation Services - Experimentelle Erprobung und Entwicklung von KI-Dienstverbünden für Innovationen auf industriellen Daten (01IS22095D)
|0 G:(BMBF)01IS22095D
|c 01IS22095D
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Riedel, Morris
|0 P:(DE-Juel1)132239
|b 1
|u fzj
700 1 _ |a Marx, Gernot
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Bickenbach, Johannes
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Schuppert, Andreas
|0 P:(DE-HGF)0
|b 4
773 _ _ |a 10.1016/j.jcrc.2024.154795
|g p. 154795 -
|0 PERI:(DE-600)2041640-4
|p 154795
|t Journal of critical care
|v 82
|y 2024
|x 0883-9441
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1026013/files/1-s2.0-S088394412400282X-main.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1026013/files/1-s2.0-S088394412400282X-main.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1026013/files/1-s2.0-S088394412400282X-main.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1026013/files/1-s2.0-S088394412400282X-main.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1026013/files/1-s2.0-S088394412400282X-main.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1026013
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)185651
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)132239
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5112
|x 0
914 1 _ |y 2024
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 p c |a DFG OA Publikationskosten
|0 PC:(DE-HGF)0002
|2 APC
915 p c |a DEAL: Elsevier 09/01/2023
|0 PC:(DE-HGF)0125
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-24
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-24
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-09
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J CRIT CARE : 2022
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-09
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-09
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
920 1 _ |0 I:(DE-Juel1)CASA-20230315
|k CASA
|l Center for Advanced Simulation and Analytics
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)CASA-20230315
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21