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A B S T R A C T   

Purpose: Treatment of patients undergoing prolonged weaning from mechanical ventilation includes repeated 
spontaneous breathing trials (SBTs) without respiratory support, whose duration must be balanced critically to 
prevent over- and underload of respiratory musculature. This study aimed to develop a machine learning model 
to predict the duration of unassisted spontaneous breathing. 
Materials and methods: Structured clinical data of patients from a specialized weaning unit were used to develop 
(1) a classifier model to qualitatively predict an increase of duration, (2) a regressor model to quantitatively 
predict the precise duration of SBTs on the next day, and (3) the duration difference between the current and 
following day. 61 features, known to influence weaning, were included into a Histogram-based gradient boosting 
model. The models were trained and evaluated using separated data sets. 
Results: 18.948 patient-days from 1018 individual patients were included. The classifier model yielded an ROC- 
AUC of 0.713. The regressor models displayed a mean absolute error of 2:50 h for prediction of absolute du-
rations and 2:47 h for day-to-day difference. 
Conclusions: The developed machine learning model showed informed results when predicting the spontaneous 
breathing capacity of a patient in prolonged weaning, however lacking prognostic quality required for direct 
translation to clinical use.   

1. Introduction 

The ventilator weaning for patients who have undergone extended 
periods of mechanical ventilation (MV) is a complex and frequently 
challenging process. It can encompass a significant portion, approxi-
mately 40–50%, of the total MV duration [1], Therefore, it’s crucial to 
focus on liberating patients from MV at the earliest time point when the 
underlying causes of respiratory failure are resolved. Patients, in whom 
weaning is protracted, usually have had a longer stay on an Intensive 

Care Unit (ICU) and show typical risk factors like advanced age, complex 
surgical procedures leading to complications, or severe comorbidities, 
especially cardiac and pulmonary conditions resulting in chronic 
ventilatory insufficiency [2]. The widely adopted definition of the In-
ternational Consensus Conference in Intensive Care Medicine classifies 
patients to be in “prolonged weaning”, if they fail more than three 
spontaneous breathing trials (SBTs) or stay under MV for >7 days after 
the first SBT [3]. Patients experiencing prolonged weaning typically 
suffer from an insufficiency of the respiratory musculature which is 
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caused both by a pronounced contraction weakness of the diaphragm in 
combination with a deconditioning of the peripheral respiratory 
musculature [4-6]. Additionally, various factors contribute to dimin-
ished respiratory capacity during prolonged weaning, like mental im-
pairments (e.g. delirium), recurrent infection, cardiac or renal failure, 
anaemia, malnutrition, imbalances of electrolytes and acid-base (e.g. 
hypomagnesaemia, hypochloremic alkalosis) or excessive positive fluid 
balance [7]. Retrospective studies indicate that biometric factors like 
age and sex also influence weaning outcomes [8-12]. Unsurprisingly, 
also the length of stay (LOS) on ICU and preceding duration of MV play 
significant roles in the course of weaning [8]. 

Given the high complexity of patients in prolonged weaning due to 
the indicated limiting organ dysfunctions and comorbidities, their 
treatment demands a systematic overall strategy in specialized units or 
centres with the corresponding interdisciplinary expertise of all pro-
fessional groups involved and the necessary structural prerequisites 
[13]. The current weaning practice involves intermittent, structured and 
protocolized SBTs, where a patient is periodically disconnected from the 
respirator and breathes without respiratory support for a predefined 
period of time. After completion of the specified time or if the patient 
shows clinical signs of exhaustion, the SBT is terminated and ventilatory 
support is resumed [14]. Especially, in the beginning of a structured 
weaning approach, SBT durations of only a few minutes are not un-
common. In case of a clinical improvement of the patient, the duration of 
these SBTs can be extended from day to day until a full liberation from 
MV is achieved. Through continued repetition of this process, the res-
piratory musculature can be reconditioned to take over again the task of 
pulmonary gas exchange. 

However, determining the optimal duration of SBTs has to be chosen 
wisely to balance the respiratory muscle load. Both ventilatory over-
loading, as well as underloading are unfavourable and could prolong 
weaning unnecessarily. Severe exhaustion of the respiratory muscles in 
particular should be avoided at all costs, since it may lead to dia-
phragmatic injury [15-17]. Thus, setting the target duration for spon-
taneous breathing per day is crucial and requires extensive clinical 
expertise and the ability to monitor and appraise a patient’s condition 
well. Making this task even more challenging, there are neither clear 
criteria nor clear protocols which would support clinicians with this 
task. Clinicians typically not only use their impression on a patient but 
also structured data, like vital signs or laboratory parameters for 
assessment of a patient’s condition. Thus, it can be hypothesized that the 
capacity of spontaneous breathing can be derived at least in part from 
these structured data. However, given the complexity and multitude of 
influencing factors, human caregivers, might miss crucial information. 
Due to its inherent ability to effortlessly analyse high-dimensional data 
and detect patterns in it, techniques of Artificial Intelligence (AI) could 
display their strengths in this area and support physicians and nurses 
with this task. 

Hence, this study aimed to develop a data-driven machine learning 
(ML) model which is able to predict the duration of unassisted sponta-
neous breathing in patients undergoing prolonged weaning from MV 
using one day’s data to predict the SBT duration of the next day. 
Initially, the analysis sought to determine the model’s ability to gener-
ally predict an increase in SBT duration per se. Subsequently, two other 
models were created to predict both the exact duration of spontaneous 
breathing at the next day and the achieved difference between the 
current and the following day. 

2. Materials and methods 

2.1. Ethical approval 

This study was approved by the local ethical review board (EK 122/ 
13, Ethics Committee, Faculty of Medicine, RWTH Aachen, Germany). 
Due to the retrospective character of the study, the Ethics Committee 
waived the need for an informed consent. 

2.2. Data sources and patient data set 

Data were retrieved from online patient data management system 
(IntelliSpace Critical Care and Anesthesia, ICCA Rev. F.01.01.001, Phi-
lips Electronics, Netherlands). The raw data were extracted as comma- 
separated value files. 

The data set included data of all patients, who were admitted to the 
Interdisciplinary Weaning Unit at the University hospital RWTH Aachen 
over a five year period from 2017 to 2022 as a convenience sample. 
Admission criteria to the weaning unit include a previously performed 
tracheostomy not shorter than 24 h and a documented SBT (including 
reasons for withdrawal) as well as an assessment of the patient’s read-
iness to wean [3], respectively, during the preceding ICU stay. Addi-
tionally, the absence of acute illness and multi-organ failure, absence of 
high-dosage or multiple vasopressor therapy, and the absence of 
continuous renal replacement therapy (RRT) is required. A surgical 
treatment, especially multistage procedures that require repeated per-
formance of general anesthesia, should be preferably completed prior to 
admission. All extracted parameters were acquired and used in daily 
clinical routine and no additional data were collected. 

2.3. Software and computational resources 

For data pre-processing and development of the predictive model, 
the source-code editor Visual Studio Code (Version 1.71.2, Microsoft 
Corporation, Redmond, USA) and the programming language Python 
3.10.5 (Python Software Foundation, Delaware, USA) in combination 
with its libraries numpy 1.23.3 [18], pandas 1.5.0 [19] and scikit-learn 
1.1.2 [20] was used. Data visualisation was carried out using matplotlib 
3.6.0 [21] and single components of seaborn 0.12.0 [22] and scipy 1.9.1 
[23]. Computationally intensive calculations were carried out on the 
high-performance computing resources at the Juelich Supercomputing 
Centre of the Forschungszentrum Jülich, namely on the Data Analytics 
Module (DAM) of the Dynamical Exascale Entry Platform (DEEP) [24]. 

2.4. Choice of features 

With respect to the evidence-based or perceived importance for the 
weaning outcome and the availability of data, a list of 61 clinical fea-
tures was selected by group consent of two physicians who were expe-
rienced in the treatment of patients undergoing prolonged weaning. For 
all selected characteristics, there is evidence that they have either in-
fluence on the course of weaning themselves or that they represented a 
clinical condition that in turn had an impact. The included features 
comprised biometric information, vital signs, respirator settings, labo-
ratory tests indicative for infectious processes or electrolyte imbalances, 
information on the administration of certain drugs, like vasopressors, 
sedatives, opioids, antipsychotic or anti-infective medication and 
transfusion of blood products as well as diuresis and the fluid balance 
over 24 h. For a full list of features please refer to the supplemental 
material (see Table S1). 

2.5. Data preprocessing 

For preparation of the analysis, extracted data were first revised for 
data-related inconsistencies, like diverging units, diverging decimal 
separators or values containing unreadable signs, as well as medical 
inconsistencies, like laboratory test results taken from wrong samples. 
For patients, who were transferred from an external hospital and thus 
lacking the information on the preceding ICU stay, length of stay on ICU 
was set to missing value. Dynamic parameters were transformed into 
one single value per day as mean, minimum or maximum values, 
depending on the pathophysiological medical background. These data 
were used as features for the predictive models. Finally, one data point 
represented one single day of one single patient. Obvious artifacts, e.g. 
due to a disconnected or misplaced sensor, were eliminated. Due to poor 
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data quality, information on transfusions and anti-infective medication 
had to be converted to a Boolean parameter indicating that a patient 
received the respective therapeutic agent, but not containing informa-
tion on a specific compound or dosing. 

The data of respiratory parameters were calculated from manually 
entered respirator settings or from measurements which were auto-
matically generated by the respirator depending on their availability. 
Wherever available, automatically measured values were preferred. A 
data point was labelled as “respirator-free”, if no MV data was docu-
mented on the respective time point. Patient days, which showed no MV 
for 24 h on the respective as well as on the preceding and following days, 
were excluded from analysis, as the patient can be considered as suc-
cessfully weaned. Finally, the data of the discharge day were removed, 
as logically it was not possible to predict a subsequent day. 

2.6. Predicted outcome 

Three predictive models were created to predict a patient’s ability to 
breathe spontaneously on the next day in a qualitative and quantitative 
way. The predictive targets were (1) a patient’s qualitative ability to 
increase their temporal proportion of spontaneous breathing, (2) the 
exact duration of spontaneous breathing on the following day, and (3) 
the exact difference in spontaneous breathing between the current and 
the following day. 

2.7. Algorithm 

For the generation of the predictive models, a Histogram-based 
Gradient Boosting Classifier Tree and a Histogram-based Gradient 
Boosting Regressor Tree from the scikit-learn library were used, 
respectively (Pedregosa et al. 2011). Histogram-based Gradient Boosting 
represents a further improvement of the popular Gradient Boosting al-
gorithms LightGBM [25]. It takes advantage of the fact that the speed of 
the construction of decision trees is significantly higher if the number of 
values for continuous input features is reduced, what can be achieved by 
“binning” them into a fixed number of bins [26]. The number of unique 
values of a continuous feature thus can be reduced from tens of thou-
sands down to a few hundred or even less. This binning procedure 
usually does not affect the model performance, but remarkably reduces 
training time [25]. For the binning of the input data, efficient data 
structures, like histograms, are used making it more efficient in both 
memory consumption and training speed than an algorithm dealing with 
continuous values. Compared to other algorithms, it is thus especially 
faster in big datasets with a sample size above 10,000 data points. 
Another characteristic, which is much more relevant in the context of 
the present work, is its native support for missing values (NaNs). 

2.8. Validation of the models and hyperparameter tuning 

For the validation of the models, the available dataset was split into a 
train data set of 80% and a test data set of 20% of the full data set, both 
selected using a random permutation process. To prevent a potential 
information leakage through the appearance of data points of one in-
dividual patient in both the train as well as in the test data set, the al-
gorithm for data splitting “sklearn.model_selection.GroupKFold” was 
used. The classifier model was evaluated using the sensitivity (also 
known as true positive rate or recall), specificity (also known as true 
negative rate), positive predictive value (also known as precision) and 
negative predictive value, accuracy score and the ROC-AUC. For the 
evaluation of the regressor models, the adjusted R2 score, the Mean 
squared error score (MSE) and the Mean absolute error score (MAE) 
were used. Both classifier and regressor models were analyzed for the 
most relevant features using the permutation feature importance 
technique. 

2.9. Learning curves 

Learning curves for all models were created to gain insight into the 
variance and bias of the trained models. For this purpose, the data set 
was split into training and test data set using a 5-fold cross-validation for 
every step. The number of training data points was increased in ten steps 
up to the full training data set. For every randomly selected number of 
training data points, a new model was trained. The accuracy score for 
the classifier and the MSE for the regressor as quality metrics were 
averaged over all 5 runs and plotted against the size of the training data 
set. 

For all models, the respective hyperparameters were optimized using 
grid search with stratified 5-fold cross-validation on the training set. The 
optimized hyperparameters comprised the maximum number of itera-
tions of the boosting process (“max iter”), the learning rate, the mini-
mum number of samples per leaf, the L2 regularization, the maximum 
number of bins to use for non-missing values (“max bins”) and the 
maximum depth of each tree (“max depth”). In case of the classifier, a 
repeated stratified k-fold cross validation with 10 folds and 3 iterations 
was carried out and the best hyperparameters were chosen with respect 
to the accuracy metric. Contrasting, for the regressor, a repeated k-fold 
cross validation with likewise 10 folds and 3 iterations was carried out 
and the selected metric was a negative MAE. Subsequently, the gener-
ated hyperparameters were adjusted in the predictive models. The 
maximum number of iterations of the boosting process resulted in a high 
tendency to create overfitting without relevantly contributing to 
improvement of the validation score. Therefore, boosting was kept on 
default value (‘max_iter’ = 100). The optimized hyperparameters are 
given in the supplementary material (see Table S2). 

3. Results 

3.1. Clinical characteristics 

The complete dataset encompassed 1018 individual patients who 
were admitted to the Interdisciplinary Weaning Unit after November 25, 
2016, and discharges before January 22, 2022. The average age of the 
patients was 65.5 years, with males comprising nearly two-thirds of the 
group. Prior to being transferred, patients spent an average of approxi-
mately 20 days receiving treatment in an ICU. Information about the 
previous ICU stay was unavailable for 10.4% of patients, as they were 
transferred from an external hospital to the weaning unit. The average 
length of stay on the weaning unit was nearly 26 days. Since the data 
extracted from the PDMS did not include diagnoses, it was not possible 
to definitively identify patients who were discharged as fully weaned. 
Around 17.1% of patients were respirator-free on the last full day before 
discharge, since there was no MV documented on that day. Furthermore, 
at least 68.9% of patients required ventilation for <6 h on this day. 
Detailed clinical characteristics of the included patients can be found in 
Table 1. 

Table 1 
Clinical characteristics of the included patients. IQR Interquartile ratio, ICU 
intensive care unit, WEA weaning unit.  

Parameter Median (IQR) or n (%) 

Included patients 1018 (100) 
Age [years] 66.97 (18.29) 
Length of stay on ICU [days] 15.83 (14.15) 
MV duration on ICU [days] 14.93 (12.97) 
Transfer from external ICU (i.e. ICU data missing) 106 (10.41) 
Length of stay on WEA [days] 19.79 (19.81) 
Male sex 693 (68.08) 
MV free time at last full day on the weaning ward   
- 24 h (“respirator-free”) 174 (17.09)  
- > 18 h 701 (68.86)  
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3.2. Data set 

The complete data set encompassed 22,887 data points, each rep-
resenting one day of treatment for a specific patient in the specialized 
weaning unit. From these, 3.939 “respirator-free” datapoints without 
documented MV over a period of 72 h were excluded, resulting in a final 
data set of 18.948 data points. Within this data set, there were 9037 data 
points indicating an increase in SBT duration, while 9911 data points 
showed no increase, making the distribution of classes nearly balanced. 
Due to varying lengths of stay among patients, each patient contributed 
differently to the respective data set. Some features exhibited notably 
low data density, particularly certain laboratory parameters such as 
BNP, IL-6, chloride, magnesium, and phosphate, missing in >80% of 
data points. A full list of missing data proportions for each feature can be 
found in the supplementary material (refer to Table S3). 

3.3. Predictive accuracy of the trained models 

3.3.1. Classification models 
When assessing a patient’s ability to extend SBT duration the next 

day, the classifier achieved an overall accuracy score of 0.65 on the test 
data set, indicating that around two-thirds of the predictions were cor-
rect. Sensitivity and negative predictive value slightly surpassed speci-
ficity and positive predictive value. The ROC-AUC for this model was 
0.713 (refer to Fig. 1). In comparison to the metrics from the training 
data set, the model exhibits an absolute decrease in accuracy of 
approximately 15% when applied to the test data. Detailed metrics for 
the classifier model concerning both the training and test data sets can 
be found in Table 2. 

The analysis of feature importance using permutation revealed that 
only seven features showed a notable influence, represented by a 
decrease of accuracy of >0.005 when values of the respective parameter 
were scrambled. These crucial parameters included the MV-free time on 
the current day, which emerged as the most pivotal feature. Similarly, 
the differences between the SBT duration of the current day and the day 
1, day 2 and day 3 before had relevant influence. Additionally, the urine 
output, the FiO2 and the age showed relevant influence. A visualisation 
of the full set of features and their respective importance can be found in 
the supplementary material (see Fig. S1). 

The learning curve for the classifier model reveals that the validation 
error shows practically constant behaviour and reaches its plateau 
already with a model trained on 10% of the final training data. Even 
with a higher amount of training samples, the model is unable to in-
crease the predictive accuracy on test data. In contrast, the accuracy of 
the prediction on training data starts at a high point and decreases only 
slowly with increase of data points. After reaching the full size of the 

training dataset, there is still a relevant gap between the predictive 
performance achieved, indicating a decrease in accuracy when moving 
from predicting training data to predicting test data. The learning curve 
for the classifier is given in Fig. 2. 

3.3.2. Regressor models 
The regression model predicting the absolute duration of SBT on the 

following day displayed a MAE of 2.84 h (i.e. 2 h and 50 min) for the test 
data. Regarding the prediction of the difference between the current and 

Fig. 1. ROC curve and confusion matrix of the classifier model. A. ROC curve of the classifier model applied on the test data set. B. Confusion matrix of the classifier 
model applied on test data set showing the combination of true and predicted labels. 

Table 2 
Evaluation metrics of the classifier models applied on the test and training data 
set. Classifier target: Increase of duration of MV-free time at the following day. 
PPV: positive predictive value, NPV: negative predictive value, ROC: receiver 
operating characteristic.   

Accuracy Sensitivity Specificity PPV NPV ROC 
score 

Test data set 0.65 0.70 0.61 0.62 0.68 0.713 
Training data 

set 
0.80 0.85 0.76 0.76 0.85 0.891  

Fig. 2. Learning curve for the classification model. The models were trained 
using a 5-fold cross validation. The accuracy of training and validation is 
plotted against the size of available training data set of the respective model. 
The lines indicate the mean value, while the standard deviation is indicated by 
the shaded area. 
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the next day, the MAE was marginally improved, measuring at 2.79 h (i. 
e. 2 h and 47 min). The full metrics of the regressor models can be found 
in Table 3. 

Although both MAE values were nearly identical, a plotting of pre-
dicted against the actual durations shows that the distribution of pre-
dictions is relevantly diverging between the two models. In the case of 
predicting the absolute SBT time, the data points representing true vs. 
predicted values predominantly cluster around the identity line (see 
Fig. 3). Conversely, when predicting the difference between consecutive 
days, the plot of predicted versus true values displays two clusters 
centred around predicted values of 0 and 10 h (see Fig. 3B). However, 
these clusters are elliptical in shape, indicating that the dispersion of the 
true values is significantly greater than that of the predicted ones, so that 
the pattern clearly deviates from a linear distribution. 

The permutation analysis emphasized the significance of features 
previously identified as crucial for the classifier algorithm. Key features 
included MV-free time, 24-h urine volume, the difference in SBT dura-
tion between the current day and one, two, and three days before, as 
well as respiratory parameters, like FiO2 and inspiratory pressure sup-
port (ASB). Interestingly, urine volume was more important in predict-
ing differences, whereas MV-free time turned out to be more influential 
in predicting the absolute value of SBT. Detailed plots of the permuta-
tion analysis can be found in the supplementary material (see Figs. S2 
and S3). 

In contrast to the classifier’s learning curves, the learning curves of 
the regressor models showed a gradual, albeit marginal decrease of MSE 
with growing size of the training data set when predicting the test data 
(see Fig. 4). Correspondingly, the MSE of a prediction of training data 
increases slowly and steadily with growing data set. While the slope 
becomes less pronounced with more training data, it still remains 
possible that the curves converge with additional data. However, even at 
the maximal sample size of the training data, a notable performance 
gaps persists between training and test data within the models. 

4. Discussion 

Assessing a patient’s ability to breathe without ventilatory support 
during prolonged weaning from MV poses a significant challenge for 
clinicians. These patients form a diverse group with unique character-
istics that may exceed a physician’s full comprehension due to their 
complexity. While the analysis of complex high-dimensional data can be 
a problem for clinicians, ML algorithms theoretically offer a potential 
solution. However, the models generated in this study produced only 
moderate results, with approximately two-thirds of qualitative pre-
dictions being correct regarding increased duration. On average, there 
was nearly a 3-h difference between predicted and achieved durations. 

The complexity of this field might explain why, to the authors’ 
knowledge, publications with a similar focus are not available. Most 
literature focuses on successful extubation as the primary outcome, 
usually after short-term MV durations, often less than a week before 
inclusion, which doesn’t represent patients undergoing prolonged 

weaning [27]. However, in patients in prolonged weaning, the road to 
extubation or decannulation is much more complex than the act of 
extubation itself. Or in other words: if a physician can already think 
about extubating a patient, the most difficult part of the job is already 
done. Models explicitly focussing on patients in prolonged weaning 
were, for instance, developed by Yang et al. and Lin et al. both using data 
sets of patients under MV for >21 days and focussing on successful 
extubation as primary outcome parameter [28,29]. Another model 
explicitly developed for the use in long-term MV patients by Hadjito-
dorov and Todorova included patients to the training dataset with a 
mean MV duration of >26 days aiming to determine the time point when 
a patient is ready to start the weaning procedure, i.e. the transfer from 
controlled ventilation to assisted spontaneous breathing. Notably, their 
model was finally applied prospectively in a real-world setting [30]. 

The present work included 1018 individual patients, forming a high 
number compared to other observational studies involving this patient 
cohort, usually involving fewer than 300 patients [2]. Despite some 
minor differences, like an about eight days shorter duration of MV in 
median before transfer to the weaning unit, the examined population 
appeared to be comparable with the patient population in a network of 
70 German pneumological weaning centres „WeanNet“[8]. A clear de-
viation from the registry data occurred in the attempt to derive a suc-
cessful weaning exclusively from the structured data. While the 
WeanNet registry reports 64.3% of successfully weaned patients, only 
17.01% of the patients from the data set used, no MV is documented at 
the last full day before discharge from the weaning unit. This notably 
low percentages are also in contrast to prior evaluations in a subsample 
from the same weaning unit reporting 80% successfully weaned patients 
[31]. This apparent contradiction could be caused by the fact that the 
structured data could be biased due to a standard of care. In clinical 
routine on ICU and on the weaning ward as well, even spontaneously 
breathing patients, often receive positive pressure ventilation – usually 
using a non-invasive interface – for the purpose of pneumonia prophy-
laxis. Thus, durations of up to 4 × 1.5 h daily, which is a widely-used 
routine, are usually considered as a prophylactic measure and there-
fore not assessed as MV in the narrower sense. 

The available data set encompassed a high proportion of missing 
values, especially in certain features. However, it must be considered 
that the absence of measured values can contain information in a 
medical context as well. For instance, a missing parameter can reflect 
the opinion of a physician on charge that a laboratory analysis will 
currently not reveal any relevant new information since a patient has 
stabilized [32]. Thus, an imputation of missing values seemed not 
justified. These considerations, in turn, significantly constrained the 
options when selecting the algorithm leading to the choice of a 
Histogram-based Gradient Boosting algorithm. Although this choice 
provided not only a native support for missing values and proves to be a 
very efficient when training on large datasets, it also has some draw-
backs, such as a tendency to overfitting, which is common in decision 
tree-based methods [33]. 

This problem could also be clearly demonstrated using the learning 
curves generated during the model development. Small training data 
sets lead to a nearly full memorization of data when predicting training 
data. Also, with a growth of the training data set, the accuracy on 
training data stayed constantly better than on the test data indicating an 
overfitting of the models. The course of the performance metric in the 
test data, however, is rather surprising. It reaches its plateau already 
with a model trained on 10% of the final training data and from that 
point on a further increase of accuracy is not achievable or with respect 
to a decrease of MAE in the regressor only to minimum extent. Due to 
these results, it can be concluded that even a further increase of data 
points in the training data set will not lead to a better predictive 
performance. 

The classifier model for the prediction of an increase in MV-free 
duration achieved a ROC-AUC score of 0.73 which is considered as 
“acceptable” [34]. From a clinical point of view this kind of model might 

Table 3 
Evaluation metrics of the regressor models applied on the test and training data 
sets. Target: Prediction of absolute duration of MV-free time at the following day 
and of difference of duration of MV-free time from current to the following day. 
MAE: mean absolute error, MSE: mean squared error.   

MAE [hour] MSE [hour2] Adjusted R2 

Prediction of absolute MV-free time at the next day 
Test data set 2.84 15.20 0.754 
Training data set 2.50 11.45 0.806  

Prediction of the difference of MV-free time to the next day 
Test data set 2.79 14.99 0.324 
Training data set 2.51 11.86 0.460  
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be even more useful since it would be able to support physicians with the 
decision whether a patient can proceed in the weaning process or not. 
This prediction, if it is done accurately enough, is much more important 
and relevant than trying to predict the MV-free time of the next day to 
the minute and then, due to the high inaccuracy of the model, predicting 
a deterioration instead of an in fact possible increase in MV-free time. 
The prediction of precise time spans or their difference for spontaneous 
breathing on the following day showed just this behaviour with pre-
dicted values deviating by 2:47 h to 2:50 h from the real values on 
average. Regarding the MAE, the target of the model (absolute MV-free 
time vs. change between the days) was not relevant. But looking at the 
scatter plot of prediction vs. true values, salient distributions become 
evident. Although, the predictions of absolute MV-free times scattered 
symmetrically around the identity line, the Gaussian kernel density 
estimation revealed two clusters, namely one big cluster of patients, 
which still have a low spontaneous breathing capacity, i.e. under five 

hours, and another cluster with a centre at about 16 h gets visible. These 
two clusters represent typical clinical findings. The first observation 
indicates that especially the start of weaning is sometimes challenging, 
with several patients requiring several days of recurrent, very short SBTs 
adding up to one or two hours only before they start making bigger 
progress leading to a relevant increase of MV-free time. The following 
steps to increase MV-free time frequently are run through quite easily. 
The last step before complete liberation from the ventilator is again - 
also mentally - a big step and physicians, as well, are sometimes hesitant 
to take back the last hours of MV, which are applied, on one hand, as 
intermittent pneumonia prophylaxis of up to six hours, as already 
explained above, or on the other hand as a continuous MV of 6 h for 
night rest. Maintaining ventilation at night is an established treatment 
option for patients with persisting respiratory insufficiency, as well, e.g. 
in advanced cases of COPD [35]. While these findings for the model 
predicting the absolute MV-free time are reasonably explainable, this is 

Fig. 3. Plots of the predicted vs. the true values of the regressor models. Evaluation was carried out on the test data set. The density of points is represented by a 
Gaussian kernel density estimation. A. Prediction for time without MV at the following day B. Prediction for the difference of MV-free time from one day to the next. 

Fig. 4. Learning curves for the regression models. Models were trained using a 5-fold cross validation. The mean squared error of training and validation is plotted 
against the size of the available training data set of the respective model. The lines indicate the mean value, while the standard deviation is indicated by the shaded 
area. A. Regressor for prediction of the absolute duration of SBT on the next day. B. Regressor for prediction of the difference of the SBT duration from one to the next 
day. MSE: mean squared error. 
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much more difficult for the model predicting the difference of MV-free 
time between two days. Looking at the plot of predicted and true dif-
ferences, there are two clusters with centres on the identity line at true 
values of 0 h and about 10 h. Looking at the plot of the test data, it 
appears that the predicted values are elliptically distributed around the 
centres, i.e. the model predicts either no difference or an increase of 10 
h, while the true values deviate considerably from this value in both 
directions. However, a look at the plot of training data, which has a 
higher data density, reveals that the ellipses have indeed a positive 
slope, which is, however, much too small to fit the data correctly (see 
Fig. 5). Thus, it can be stated that the model is able to detect a trend but 
is much too conservative in its prediction. The question of how this 
pattern occurs ultimately remains unclear. 

Although only features which were shown to have an influence on 
the weaning were included into the model, the vast majority of features 
influenced the metrics of the models just minimally. Beside the features, 
which represent the current SBT capacity of a patient on the neigh-
bouring days and some features representing the respiratory situation, 
the most relevant features contained the daily urine volume and creat-
inine representing the absence of a renal failure. The relationship be-
tween renal failure requiring renal replacement therapy and a bad 
outcome in prolonged weaning is in concordance with several publica-
tions in this cohort [36,37]. Interestingly, the fluid balance had much 
lower influence, although its inclusion still improved the model. More-
over, the connection between length of stay and MV duration on ICU, 
which were important for the performance, was demonstrated repeat-
edly before, as well [8]. It must also be considered that the remaining 
features might be predictive for a weaning success in the long run but are 
not useful for the small-scale prediction of the next day. This would also 
agree with the finding that die adjacent MV-free time spans are obvi-
ously more important than other features, which, in contrast, might 
show bigger influence on the final outcome. 

To the best of the author’s knowledge, there are no examinations 
which assess the accuracy of physicians or similar predictive model 
when predicting a patient’s respiratory capacity in the next 24 h. Thus, a 
comparison of the developed models against an existing standard is not 
possible. It would be of high interest, whether human physicians would 
achieve similar or better accuracy rates. Due to the lack of these 

examinations, it is also not possible to appraise the clinical usefulness of 
the predictive models. From a clinical perspective, a model that 
correctly classifies only 2 out of 3 cases or which deviates from the real 
duration on average >2 h might have difficulty being accepted in 
routine clinical practice. Considering the serious deviations of some 
outliers, which can reach even >20 h, it becomes clear that considerable 
improvements of the models would be necessary in order to consider 
further clinical testing. 

If all these considerations are summarized, the question ultimately 
remains as to why the predictive accuracy of the models has fallen so far 
short of expectations. One possible interpretation of the results would be 
that the information from one single day represents a very limited sec-
tion of data, which is not suitable for making respective predictions. The 
course that a patient has taken over the last several days may play a 
much greater role than the one-day-snapshot. Thus, it definitely would 
be worth examining if the predictive performance can be increased by 
extending the present models with algorithms and techniques from time 
series forecasting to integrate and process longer time periods, like e.g. 
long short-term memory (LSTM) models [38]. A much more funda-
mental question, however, is whether the information that would enable 
a correct prediction is contained in the structured clinical data at all. For 
example, the clinical impression that a patient makes on physicians and 
nurses, but which is not documented anywhere in this form, could have 
a significantly greater impact on the patient’s ability of spontaneous 
breathing. For instance, it was shown that a clinical concern of an 
experienced healthcare worker was able to detect patient deterioration 
better than standardized scores [39]. Similar considerations could apply 
to the context of prolonged weaning. The same applies for the reason to 
terminate an SBT, which is documented just in an unreliable way. 
However, an SBT that was interrupted because the patient complained 
of severe respiratory exhaustion would of course have a different 
meaning for the next day than an SBT that was terminated as planned 
after the preset time had elapsed. 

Another relevant limitation of this study was the missing information 
on the diagnoses of patients. This information would have included 
relevant information, which also might had been useful as potential 
features indicating the presence of certain conditions like Chronic 
obstructive pulmonary disease (COPD) or ICU-acquired weakness 
(ICUAW). Moreover, a list of diagnoses also had included information 
about the final weaning outcome. A common obstacle in medical data 
science is the heterogeneous and sometimes poor data quality of the raw 
data, which made an extensive data cleaning necessary. In the present 
work, for example, data on blood products or medication contained a lot 
of free text entries including incomplete and or inconsistent data, which 
prevented the extraction of the absolute number of administered red 
blood cell concentrates, although it was shown to have a clinical impact 
as well [31]. Similar problems arised during the work on data from 
blood gas analyses (BGA) giving valuable insights into oxygenation and 
removal of CO2. Due to unclear time stamps attached to the BGA pa-
rameters, it was not possible to reliably determine whether a BGA 
sample was taken under MV or under an SBT. 

The problems that became evident during pre-processing and data 
cleaning at least gave rise to the assumption that the design of either the 
patient data management system or at least the respective data extrac-
tion algorithms had not been considered in terms of a secondary use of 
the extracted data. It would therefore be desirable for subsequent ver-
sions to at least facilitate secondary data usage and possibly update 
systems that have already been implemented accordingly. Clinicians and 
researchers should actively address this aspect when communicating 
with the manufacturers of such systems. 

This study focussed on an increase of spontaneous breathing time as 
topic of highest interest and thus created a binary classifier. However, it 
might also have been of interest to predict a deterioration with decrease 
of the SBT duration as a “pre-warning system” which had resulted in a 
multiclass classifier. Such an approach might be up to further 
examinations. 

Fig. 5. Depiction of the conservative prediction behaviour of the model pre-
dicting the differences of MV-free time between two days. Plot of the predicted 
vs. the true values of the differences of the time without MV between the 
current and the following day for the training data set. The density of points is 
represented by a Gaussian kernel density estimation. The two indicated clusters 
(red ellipses) show a slight positive slope (dotted red line) which is however too 
small for a good fit of the data. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 
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5. Conclusions 

In the present work, an attempt was made to approach the chal-
lenging task of determining the spontaneous breathing capacity of a 
patient in prolonged weaning using a data-based ML model to predict an 
improvement of SBT duration as well as prediction of specific durations. 
Although a large number of 61 features was included in the model, for 
which an influence on the weaning process was demonstrated 
throughout, the results showed predictive qualities below clinical needs. 
In particular, the actual prediction of a duration showed such serious 
deviations between predicted and real value that implementation in a 
clinical context appears inappropriate. 
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from the Department of Medical Informatics of the University hospital 
RWTH Aachen for his valuable contributions and the fruitful discussions 
during this project. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.jcrc.2024.154795. 

References 
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