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This work provides the first combined analysis of low-energy pΛ scattering, considering both cross section 
and correlation data. The obtained results establish the most stringent constraints to date on the two-body 
pΛ interaction, pointing to a weaker attraction than so far accepted. The best set of scattering lengths for the 
spin singlet and triplet are found to range from 𝑓0, 𝑓1 = (2.1, 1.56) to (3.34, 1.18) fm. With a chiral NY potential 
fine-tuned to those scattering parameters, the in-medium properties of the Λ are explored and a potential depth 
of 𝑈Λ = −36.3 ± 1.3(stat)+2.5−6.2(syst) MeV is found at nuclear matter saturation density.
1. Introduction

The strong interaction between nucleons (N) and hyperons (Y=Λ, 
Σ,Ξ) plays a significant role in various aspects of nuclear and hadronic 
physics, ranging from the structure and properties of hypernuclei to the 
Equation of State (EoS) of neutron star (NS) matter [1,2]. The recent 
observations of gravitational waves emitted from NS mergers [3,4] and 
precise constraints on NS radii provided by the NICER collaboration [5–

8] triggered a renewed interest in the presence of strange degrees of 
freedom in these compact objects [9,10].

Specifically, the NΛ system represents an important pillar for our 
understanding of the low-energy QCD dynamics between ordinary mat-

ter and strange particles [11]. Chiral effective field theory (𝜒EFT) [12–

15] is an excellent tool to study the NΛ interaction, since it of-

fers the possibility to systematically improve the results by consider-

ing higher-order terms in the Lagrangian. These effective approaches 
rely on the availability of experimental data to determine the a pri-

ori unknown low-energy constants (LECs) associated with the contact 
interactions included in the Lagrangian. Until recently, the experi-

mental constraints on the NΛ interaction, and, in general, on the 
strangeness 𝑆 = −1 baryon-baryon interaction, consisted primarily of 
scattering data [16–18] and measurements of Λ-hypernuclei binding 
energies [1,19]. Elastic and inelastic cross section data, probing the 
transition NΛ ↔ NΣ, are relatively scarce and not available down to 
the threshold. Results from the COSY experiment delivered input on 
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the NΛ − NΣ dynamics by studying the pp→ pK+Λ reaction [20,21]. 
New scattering measurements on both NΛ and NΣ were reported by 
the CLAS [22] and E40 [23–25] collaborations, adding constraints at 
higher momenta. Additionally, measured binding energies and lifetimes 
of light Λ-hypernuclei [1] provide complementary information on the 
strength of the NΛ interaction, for example with regard to the hypertri-

ton [26,27] specifically on the singlet state [14].

Data on hypernuclei in the medium and heavy mass regime have 
been employed to deduce the depth of the Λ single-particle potential 𝑈Λ
in infinite nuclear matter at nuclear saturation density 𝜌0 = 0.166 fm−1. 
An overall attraction of −27 ∼ −30 MeV is typically reported [1,28–30], 
and this benchmark eventually serves as input for studies aiming to infer 
the behavior of Λ hyperons at NS core densities, reaching few times 𝜌0. 
Specifically, in microscopic investigations that commence with NY po-

tentials describing NΛ and NΣ scattering data, the generally somewhat 
too attractive contribution from the two-body interaction is counter-

balanced by an appropriate repulsive three-body NNΛ component to 
meet the ≈ −30 MeV constraint [31,32]. The interplay between two-

and three-body contributions is also considered in a recent phenomeno-

logical analysis of Λ-hypernuclei [30].

In the last years, novel data based on two-particle correlations, 
involving strange hadrons, have become available and offer high-

precision experimental insight into the 𝑆 = −1, −2, −3 baryon-baryon 
interaction [33–39]. The recent measurement of the pΛ correlation 
function in pp collisions at 

√
𝑠 = 13 TeV by the ALICE Collabora-
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tion [34] provided the most precise data on this system down to 
threshold, accompanied by the first experimental observation of the 
opening of the NΣ channel in a two-body final state. Ongoing and fu-

ture experimental efforts are posed to advance our understanding of the 
NΛ interaction and the NΛ ↔ NΣ dynamics. These efforts include the 
utilization of polarized Λ beams and high-precision hypernuclear spec-

troscopy [40], as well as statistically improved correlation functions 
during the ongoing LHC Run 3 data taking [41].

In this work, we, for the first time, perform a combined analysis 
of available NΛ scattering and correlation data to constrain the cor-

responding pΛ scattering parameters. The present study utilizes an 
Usmani-type potential and an interaction based on 𝜒EFT. Anticipat-

ing our main finding, the analysis suggests an overall less attractive 
NΛ interaction compared to what has formed the basis for theoretical 
investigations so far. To explore the possible implications for the NS sce-

narios [31,32], appropriately re-adjusted chiral potentials are employed 
to evaluate the single-particle potential 𝑈Λ at 𝜌0.

2. p𝚲 interaction

For the analysis of the pΛ correlation data at low momenta, we em-

ploy wave functions generated from two different types of potentials. 
To thoroughly explore the sensitivity of the effective range parameters 
to the measured pΛ correlation functions, we use the Usmani poten-

tial [42], which includes spin dependence but lacks coupling to the NΣ
channel. This allows for a realistic description of the NΛ interaction 
below the NΣ threshold, which is relevant for determining the effec-

tive range parameters. We use the expression for the potential given in 
Ref. [43]:

𝑉pΛ(𝑟) = 𝑉𝐶 (𝑟) −
(
𝑉 − 1

4
𝑉𝜎𝝈Λ ⋅ 𝝈𝑝

)
𝑇 2
𝜋 (𝑟). (1)

The short range part of the interaction is dominated by a Woods-Saxon-

type repulsive core 𝑉𝐶 , while the long-range part of the interaction is 
modeled by a two-pion exchange tail constructed from a modified one-

pion exchange tensor potential [43],

𝑇𝜋(𝑟) =
(
1 + 3

𝑥
+ 3
𝑥2

)
𝑒−𝑥

𝑥

(
1 − 𝑒−𝑐𝑟2

)2
, (2)

where 𝑥 = 𝑚𝜋 𝑟 ≈ 0.7 𝑟. We take over the parameters from [43], i.e. we 
use 𝑐=2 fm−2 together with 𝑉 = 6.2 MeV and 𝑉𝜎 = 0.25 MeV, for the 
spin-independent part of the attractive potential and the spin-dependent 
part respectively. The expression for the repulsive core is

𝑉𝐶 (𝑟) =𝑊𝐶

[
1 + exp

(
𝑟−𝑅𝐶
𝑑𝐶

)]−1
. (3)

Its parameters (𝑊𝐶, 𝑅𝐶, 𝑑𝐶 ) are phenomenological in nature, and thus, 
we will adjust them in accordance with the analyzed data. Specifically, 
we will vary them independently for the two NΛ spin states when ex-

ploring the spin dependence in detail, see below.

In addition, we employ a modern NY potential derived within SU(3) 
𝜒EFT [13,14], specifically, we utilize the NY potential NLO19 estab-

lished in Ref. [14]. This potential incorporates contributions up to next-

to-leading order (NLO) in the chiral expansion, in particular it includes 
contributions from one- and two-pseudoscalar-meson exchange dia-

grams, involving the Goldstone bosons 𝜋, 𝐾 , 𝜂, and from four-baryon 
contact terms (without and with two derivatives), where the latter en-

code the unresolved short-distance dynamics. The LECs associated with 
these contact terms are free parameters and have been established by 
a global fit to a set of 36 pΛ and NΣ low energy scattering data points 
[14], available since the 1960s. SU(3) flavor symmetry has been im-

posed which reduces the number of independent contact terms or LECs, 
respectively. Then, in the two 𝑆-wave states 1𝑆0 and 3𝑆0, which domi-

nate the scattering observables at low energies, there are 10 LECs [14], 
with two of them inferred from the NN sector via the imposed SU(3) 
2

symmetry.
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The present work incorporates the pΛ correlation data measured by 
ALICE as an additional experimental constraint [44]. To accommodate 
this, some of the LECs have to be varied in the search for the optimal 
strength of the NΛ interaction. Thereby, we aim at preserving the good 
description of the pΣ+ and pΣ− data, as well as the pΣ−→ nΛ transi-

tion cross section provided by the original potential [14]. The simplest 
and most efficient way to guarantee this is to relax the strict SU(3) 
symmetry for the contact interactions in the NΛ and NΣ forces [13,14]. 
Therefore, following the procedure in [45], we introduce an SU(3) sym-

metry breaking in the leading-order contact terms that contribute to the 
NΛ interaction in the relevant 1𝑆0 and 3𝑆1 partial waves. We empha-

size that such an SU(3) symmetry breaking at NLO is well in line with 
𝜒EFT and the associated power counting [13,46].

3. Analysis

The combined analysis of scattering and femtoscopic data is based 
on 12 data points for the pΛ elastic cross section, as well as six pΛ
correlation functions measured in different ranges of pair transverse 
mass 𝑚T in pp collisions at 13 TeV. In particular, six points of the 
cross section stem from the work of Alexander et al. [17], where we 
opt for those from the second choice of binning described in the cor-

responding work, while the remaining six data points are taken from 
the work of Sechi-Zorn et al. [16]. The femtoscopy data originates 
from the ALICE measurement of the pΛ correlation function in high-

multiplicity (HM) pp collisions at 13 TeV [44]. When analyzed below 
the NΣ threshold, the 𝑆-waves are sufficient to account for the inter-

action. The parameters of the repulsive core 𝑉𝐶 (𝑟) in Eq. (3) are fitted 
independently for the spin singlet (S=0) and triplet (S=1) states, re-

sulting in a total of 6 free parameters. The Usmani potential has been 
integrated into the CATS framework [47], which is capable of evaluat-

ing the corresponding cross section and correlation function by solving 
the Schrödinger equation. While this is sufficient to describe the cross 
section data, femtoscopic data necessitates additional knowledge of the 
two-particle emission source 𝑆(𝑚T, 𝑟), as demanded by the Koonin-Pratt 
equation [48]

𝐶(𝑘) = ∫ 𝑆(𝑚T, 𝑟)
|||Ψ(�⃗�, 𝑟)|||2 𝑑3𝑟. (4)

Here, 𝐶(𝑘) represents the correlation as a function of the single-particle 
momentum 𝑘 in the pair rest frame, while Ψ(�⃗�, ⃗𝑟) is the wave function 
of the relative motion of the pair. The source 𝑆(𝑚T, 𝑟) is provided as a 
function of the relative distance between the particles 𝑟 at the moment 
of their effective emission. The modeling of the source in small colli-

sion systems at the LHC has been extensively studied in several recent 
works [44,49,50], which provide compatible results on the source prop-

erties. In the present analysis, we adopt the CECA model [49], which 
operates based on a common emission source for all primordial parti-

cles. It accounts for particle production through the decay of short-lived 
resonances and incorporates an intrinsic 𝑚T scaling of the source size, 
as observed in the data. The CECA framework utilizes three fit pa-

rameters to describe an effective hadronization surface on which the 
primordial particles are emitted. These particles are all moving radi-

ally away from the collision point, with their momentum distributions 
based on experimental measurements. The simulated primordial parti-

cles include protons, Λ hyperons, or resonances that decay into one of 
these species via the strong force. After the decay of the resonances, all 
final state particles of interest are grouped into pΛ pairs. Those satisfy-

ing the low-momentum condition 𝑘 < 100 MeV∕𝑐 are used to construct 
a distribution in 𝑟 and 𝑚T, which, when normalized, corresponds to the 
source function 𝑆(𝑚T, 𝑟). The resulting source is non-Gaussian, how-

ever, an effective Gaussian parameterization yields very similar results 
for 𝐶(𝑘). The main benefit of using the CECA framework is its ability 
to simultaneously model the pp as well as the pΛ source to reproduce 
the experimentally observed decreasing source size as a function of 𝑚T. 
Consequently, this allows to calibrate the pΛ source to the pp correla-
tion, which has been measured differentially in 𝑚T by ALICE [44,51], 
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Fig. 1. Exclusion plots for the singlet (𝑓0) and triplet (𝑓1) pΛ scattering lengths based on the analysis of the cross section data (left panel) and on the combined 
analysis of cross section and correlation data (right panel). See text for details.
significantly improving the sensitivity of the correlation function to the 
interaction potential. In the present analysis, we perform a pre-fit of 
the pp correlations using the Argonne 𝑣18 potential [52], following 
the same procedure as described in [49]. However, out of the seven 
available 𝑚T bins, we have omitted the last two due to issues with con-

vergence at very low 𝑘. To eliminate any bias related to the assumption 
of a common source, the extracted source parameters from the pre-fit of 
the pp correlations are used as an initial guess for the pΛ system, after 
which they are re-fitted alongside the six interaction parameters, allow-

ing a variation of 3 standard deviations (𝜎). Finally, we verify that the 
parameters converge to a proper local minimum. The remaining details 
on both the pp and pΛ fits, such as the inclusion of momentum resolu-

tion, feed-down, non-femtoscopic baseline, etc., are mirrored from the 
analysis of the same data described in [49].

The first objective of the present analysis is to quantify the allowed 
scattering lengths in the spin singlet/triplet channels (𝑓0, 𝑓1), which 
can be accomplished by considering potentials of varying strengths in 
the CATS framework. Note that we use the sign convention where at-

tractive/repulsive interactions are characterized by positive/negative 
scattering lengths. Both the cross section and the correlation function 
are composed of a weighted sum of the two channels, with respective 
weights of 1/4 and 3/4. The interactions in the two spin states are at-

tractive and exhibit similar correlation shapes that differ in magnitude. 
Due to this similarity, the present analysis is not particularly sensitive to 
the individual scattering lengths of each spin channel, and a unique so-

lution is not expected. Nevertheless, requiring that the two-body forces 
alone produce a bound hypertriton puts a lower limit on the strength 
of the interaction in the spin singlet channel. A concrete estimate is 
difficult to provide, however, judging from results for the hypertriton 
separation energy from Faddeev calculations employing modern YN po-

tentials [14,15], values of 𝑓0 ≲ 2.0 fm are not realistic. Assuming that 
the hypertriton is solely bound by three-body forces is likewise unre-

alistic given the present estimates [53] and explicit calculations [54]

of their possible contribution. In view of this the scan is performed for 
𝑓0 > 1.6 fm. The lack of a unique solution leads to convergence issues in 
the fit procedure. To address this problem, multiple fits are performed, 
each constrained within a specific small region of 𝑓0 and 𝑓1 values. 
The procedure is repeated until the entire desired parameter space is 
scanned. The best 𝜒2 of each individual step is saved, allowing the 
creation of an exclusion plot for 𝑓0 and 𝑓1. The estimator for the ex-

clusion is the total 𝜒2 = 𝜒2
scattering

+𝜒2
femtoscopy

. The 𝜒2 is converted into 
a number of standard deviations (n𝜎) with respect to the best solution, 
accounting for a total of 9 degrees of freedom [55].

4. Results and discussion

The exclusion plot based on results with the Usmani potential is 
shown in Fig. 1. The axes correspond to the scattering lengths in the 
3

singlet 𝑓0 and triplet 𝑓1 channel, while the color code contains infor-
mation on the compatibility with the data. The left panel is based on 
the analysis of only the cross section, while the right panel is the fi-

nal result based on the combined analysis of femtoscopic and scattering 
data. The gray dashed lines mark the 1, 2 and 3𝜎 exclusion regions. 
The black solid line, in the right panel, marks the border of a 3𝜎 de-

viation with respect to the scattering data alone and is identical to the 
outer most dashed line from the left panel, while the shaded area de-

picts the region of even worse compatibility. As expected, there is a 
strong correlation between 𝑓0 and 𝑓1, and the inclusion of femtoscopy 
data into the analysis leads to a significant decrease in uncertainties. 
Values of 𝑓0 > 3.34 fm or 𝑓1 < 1.18 fm are disfavored by the data. The 
lower (upper) bound of 𝑓0 (𝑓1) cannot be constrained within the in-

vestigated parameter space. Fig. 1 contains two vertical bars depicting 
the values of the scattering parameters based on the NLO19 [14] and 
the next-to-next-to-leading order N2LO [15] potentials. The size of the 
markers represents the uncertainties related to the employed regulator 
(cutoff Λ) in the chiral NY potentials. Both of these values are located 
approximately in the middle of the phase space region allowed by the 
scattering data alone, which is not surprising, as the LECs of those po-

tentials have, up to now, been fitted to that data. Nevertheless, the 
enhanced sensitivity of the combined analysis shows that the predicted 
scattering lengths are disfavored by as much as 4.8𝜎 in the case of 
N2LO. The NLO19 interaction is overall better in line with the present 
analysis, nevertheless, a systematic deviation of ca. 1-3 𝜎 is observed, 
depending on the cutoff value. Indeed, the predictions by the poten-

tial with cutoff Λ = 600 MeV of 𝑓0 = 2.91 fm and 𝑓1 = 1.41 fm are in 
relatively good agreement, resulting in a deviation from the best solu-

tion of 1.1𝜎. On the other hand, a best fit of 𝑓1, keeping 𝑓0 = 2.91 fm 
fixed, yields 𝑓1 = 1.32 ± 0.08 fm. Clearly, due to the strong correlation 
between the two parameters, changing the value of 𝑓0 will influence 
the outcome for 𝑓1. For example, fixing 𝑓0 = 2.1 fm implies the value 
𝑓1 = 1.56 ± 0.11 fm. Considering the combined analysis (right panel in 
Fig. 1), the best set of solutions can be approximated by the relation

𝑓1 ≈ 2.2 fm − 0.3𝑓0 (±0.1 fm) (5)

for 𝑓0 ∈ (2.0, 2.9) fm. Table 1 in the Appendix provides multiple exam-

ples for scattering parameters and their compatibility to the data. These 
results indicate an overall less attractive interaction compared to the 
published chiral potentials.

As a next step we explore how this less attractive NΛ interaction 
affects predictions for the single-particle potential 𝑈Λ at nuclear sat-

uration density 𝜌0 and its density dependence in general, considering 
the relevance of this quantity for the role of the Λ hyperon in neutron 
stars [9,10]. In Fig. 2, we present results for the single-particle potential 
𝑈Λ(𝑘Λ = 0) as a function of the nuclear matter density 𝜌, evaluated self-

consistently within a conventional 𝐺-matrix calculation. We employ 
the formalism described in detail in Refs. [31,56], where the so-called 

continuous choice is taken for the intermediate states, and the N3LO 
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Fig. 2. Λ single-particle potential 𝑈Λ as a function of the nuclear-matter density 
𝜌 with 𝜌0 = 0.166 fm−3 being the nuclear-matter saturation density.

potential from [57] is used for the NN interaction. The NLO19(600) po-

tential is chosen as a starting point from which, by readjusting some 
of its LECs to reproduce 8 combinations of the NΛ spin singlet and 
triplet scattering lengths within the 1𝜎 region (points i to viii Table 1), 
we estimate the corresponding 𝑈Λ(𝜌0) given by the black square in 
Fig. 2. The vertical error bar represents the theoretical uncertainty 
estimated by considering the NLO19 potentials with different cutoffs 
(500 − 650 MeV), all re-fitted to describe the same set of scattering pa-

rameters. The final result is 𝑈Λ(𝜌0) = −36.3 ± 1.3(stat)+2.5−6.2(syst) MeV, 
where the statistical uncertainty is associated with the data on the scat-

tering parameters (right panel in Fig. 1) and the systematic with the cut-

off dependence from the theory. The resulting theoretical uncertainty is 
large, as likewise reported in standard nuclear matter calculations with 
chiral nucleon-nucleon potentials [58,59]. Additionally, for the behav-

ior of the potential depth as a function of 𝜌, we show in Fig. 2 the 
theoretical uncertainty (grey band) and the uncertainty from the com-

bined data (yellow band). The predicted values for 𝑈Λ(𝜌) are similar 
to the result for the original NLO19 potential. Our results at 𝜌0 lie be-

low the usually cited semi-empirical value of 𝑈Λ = −27 ∼ −30 MeV 
obtained from hypernuclei constraints [1,30]. This is in line with com-

parable 𝐺-matrix calculations where a similar overbinding feature has 
been observed when two-body-only contributions are taken into ac-

count, see, for example, [14,60]. In two recent works [31,32] an overall 
repulsion from a chiral NNY three-body force has been incorporated in 
the form of an effective density-dependent NY two-body potential [61]. 
This addition allows the authors to satisfy the ≈ −30 MeV hypernuclear 
constraint and, at the same time, suppresses the appearance of Λ hyper-

ons for densities as realized in NS, i.e. offers a solution to the so-called 
“hyperon-puzzle” [2,9]. Our results are compatible with such a strat-

egy. Quantitative constraints on this effective three-body force might 
become available in future correlation studies [62,63].

In conclusion, in this work we have presented the first combined 
analysis of low-energy femtoscopic and scattering data to constrain the 
𝑆-wave scattering parameters of the pΛ interaction, resulting in the 
tightest limits available for future theoretical studies. The pΛ interac-

tion is found to be overall less attractive than what has been indicated 
by the scattering data from the 1960s. We observe a strong, approxi-

mately linear (Eq. (5)), correlation between the values of the scattering 
lengths in the spin singlet and triplet states. The best solution, if 𝑓0 is 
fixed to 2.1 fm, is 𝑓1 = 1.56 ± 0.08 fm. Lower 𝑓0 values will eventu-

ally prohibit a hypertriton bound by two-body forces. The maximum 
4

(minimum) allowed values for 𝑓0 (𝑓1) are 3.34 (1.18) fm.
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Clearly, the accurate reproduction of low-energy NΛ data, like scat-

tering cross sections and femtoscopic two-particle correlation functions, 
is an important requirement for realistic predictions of many-body sys-

tems. Thus, we have fine-tuned the chiral YN potential NLO19 to match 
the established scattering parameters in order to explore the impact 
on the in-medium properties of the Λ hyperon. The result with those 
NLO19 variants for 𝑈Λ(𝜌0) is ∼ −36 MeV, which implies an overbind-

ing with regard to the nominal Λ binding energy in infinite nuclear 
matter. This is consistent with the current notion of an additional re-

pulsion acting on the Λ within the medium, attributed to three-body 
forces. The presented results can serve as a state-of-the-art guideline for 
the contribution to be expected from two-body pΛ interactions.
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Appendix A

Table 1 provides details on the 8 different selected sets of {𝑓0, 𝑓1}
values, chosen to represent the 1𝜎 region of best compatibility to the 
combined data, as well as 3 points anchored to existing parameteri-

zations of the chiral effective field theory [13–15]. The compatibility is 
estimated using the number of standard deviations, denoted as n𝜎, with 
respect to the best possible fit. We consider three scenarios: firstly, only 
the femtoscopy data is taken into account, resulting in n𝜎fmt; secondly, 
only the scattering data is considered (n𝜎sct); and thirdly, n𝜎tot corre-

sponds to the combined analysis presented in this work. It is essential 
to note that these three scenarios represent independent analyses, each 
having a different best solution as a baseline. Consequently, there is no 
straightforward relation between the three estimators.

Table 1

Summary table showing the compatibility of different scattering parameters to 
the femtocsopy data (n𝜎fmt), scattering data (n𝜎sct) as well as the combined 
analysis from the present work (n𝜎tot). If the combined estimator n𝜎tot is con-

sidered, solutions ii, v and vii represent a set of “best” solutions.

Usmani 𝑓0 (fm) 𝑓1 (fm) n𝜎fmt n𝜎sct n𝜎tot

parameterization

NLO13(600) 2.91 1.54 5.2 0.0 4.6

NLO19(600) 2.91 1.41 1.7 0.4 1.1

N2LO(550) 2.79 1.58 5.4 0.0 4.8

i 2.10 1.44 0.2 2.1 1.0

ii 2.10 1.56 0.0 0.9 0.0

iii 2.10 1.66 1.8 0.2 1.0

iv 2.50 1.32 0.2 2.2 1.1

v 2.50 1.46 0.2 0.8 0.0

vi 2.50 1.55 1.8 0.2 1.0

vii 2.91 1.32 0.1 1.5 0.3

viii 3.34 1.18 1.2 0.9 1.0
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