001026134 001__ 1026134
001026134 005__ 20251209202144.0
001026134 0247_ $$2doi$$a10.1109/TRO.2024.3392080
001026134 0247_ $$2ISSN$$a1552-3098
001026134 0247_ $$2ISSN$$a1042-296X
001026134 0247_ $$2ISSN$$a1941-0468
001026134 0247_ $$2ISSN$$a2374-958X
001026134 037__ $$aFZJ-2024-03295
001026134 041__ $$aEnglish
001026134 082__ $$a004
001026134 1001_ $$0P:(DE-HGF)0$$aGao, Ziyan$$b0$$eFirst author
001026134 245__ $$aOn the Generality and Application of Mason's Voting Theorem to Center of Mass Estimation for Pure Translational Motion
001026134 260__ $$a[Erscheinungsort nicht ermittelbar]$$bIEEE$$c2024
001026134 3367_ $$2DRIVER$$aarticle
001026134 3367_ $$2DataCite$$aOutput Types/Journal article
001026134 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1765291207_3125
001026134 3367_ $$2BibTeX$$aARTICLE
001026134 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001026134 3367_ $$00$$2EndNote$$aJournal Article
001026134 520__ $$aObject rearrangement is widely demanded in many of the manipulation tasks performed by industrial and service robots. Rearranging an object through planar pushing is deemed energy efficient and safer compared with the pick-and-place operation. However, due to the unknown physical properties of the object, rearranging an object toward the target position is difficult to accomplish. Even though robots can benefit from multimodal sensory data for estimating novel object dynamics, the exact estimation error bound is still unknown. In this work, first, we demonstrate a way to obtain an error bound on the center of mass (CoM) estimation for the novel object only using a position-controlled robot arm and a vision sensor. Specifically, we extend Mason's Voting Theorem to object CoM estimation in the absence of accurate information on friction and object shape. The probable CoM locations are monotonously narrowed down to a convex region, and the extended voting theorems' guarantee that the convex region contains the CoM ground truth in the presence of contact normal estimation error and pushing execution error. For the object translation task, existing methods generally assume that the pusher-object system's physical properties and full-state feedback are available, or utilize iterative pushing executions, which limits the application of planar pushing to real-world settings. In this work, assuming a nominal friction coefficient between the pusher and object through contact normal error bound analysis, we leverage the estimated convex region and the Zero Moment Two Edge Pushing method (Gao et al., 2023) to select the contact configurations for object pure translation. It is ensured that the selected contact configurations are capable of tolerating the CoM estimation error. The experimental results show that the object can be accurately translated to the target position with only two controlled pushes at most.
001026134 536__ $$0G:(DE-HGF)POF4-5112$$a5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001026134 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001026134 7001_ $$0P:(DE-Juel1)201481$$aElibol, Armagan$$b1$$ufzj
001026134 7001_ $$0P:(DE-HGF)0$$aChong, Nak Young$$b2$$eCorresponding author
001026134 773__ $$0PERI:(DE-600)1473038-8$$a10.1109/TRO.2024.3392080$$gp. 1 - 16$$p2656-2671$$tIEEE transactions on robotics$$v40$$x1552-3098$$y2024
001026134 8564_ $$uhttps://juser.fz-juelich.de/record/1026134/files/On_the_Generality_and_Application_of_Masons_Voting_Theorem_to_Center_of_Mass_Estimation_for_Pure_Translational_Motion.pdf$$yRestricted
001026134 909CO $$ooai:juser.fz-juelich.de:1026134$$pVDB
001026134 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b0$$kExtern
001026134 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)201481$$aForschungszentrum Jülich$$b1$$kFZJ
001026134 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b2$$kExtern
001026134 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5112$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001026134 9141_ $$y2024
001026134 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-21
001026134 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-21
001026134 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-21
001026134 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-21
001026134 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-21
001026134 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-21
001026134 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-21
001026134 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-21
001026134 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-10-21
001026134 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIEEE T ROBOT : 2022$$d2023-10-21
001026134 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bIEEE T ROBOT : 2022$$d2023-10-21
001026134 920__ $$lyes
001026134 9201_ $$0I:(DE-Juel1)IAS-8-20210421$$kIAS-8$$lDatenanalyse und Maschinenlernen$$x0
001026134 980__ $$ajournal
001026134 980__ $$aVDB
001026134 980__ $$aI:(DE-Juel1)IAS-8-20210421
001026134 980__ $$aUNRESTRICTED