001026137 001__ 1026137
001026137 005__ 20240529111526.0
001026137 037__ $$aFZJ-2024-03298
001026137 1001_ $$aXu, Yifan$$b0
001026137 1112_ $$a87th Annual Meeting of the DPG and DPG Spring Meeting 2024 of the Condensed Matter Section (SKM)$$cTU Berlin$$d2024-03-17 - 2024-03-22$$wGermany
001026137 245__ $$aTuning the magnetic properties of Fe3O4 thin films driven by electric field
001026137 260__ $$c2024
001026137 3367_ $$033$$2EndNote$$aConference Paper
001026137 3367_ $$2BibTeX$$aINPROCEEDINGS
001026137 3367_ $$2DRIVER$$aconferenceObject
001026137 3367_ $$2ORCID$$aCONFERENCE_POSTER
001026137 3367_ $$2DataCite$$aOutput Types/Conference Poster
001026137 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1714717491_31336$$xInvited
001026137 520__ $$aTuning magnetic oxide phases at heterointerfaces is a compelling strategy foradvancing spintronic and memristive device applications. Specifically for ironoxides, we have shown that we can tune themagnetic and electrical properties ofthin films upon initiating a phase transition between magnetite, maghemite andwustite. Here we show the preparation and characterization of epitaxial Fe3O4thin films grown on TiO2 - terminated Nb:SrTiO3 substrates via pulsed laser deposition(PLD).We observe a change in the Verwey transition - a critical indicatorof the oxygen content in the Fe3O4 films and in particular, the disappearanceof the Verwey transition when positive electric field is applied. In addition, usingX-ray Magnetic Circular Dichroism (XMCD), we observed a shift in the FeEdge. This could be explained by oxygen diffusion through the interface leadingto a reversible phase transition fromFe3O4(magnetite) to γ-Fe2O3(maghemite).
001026137 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
001026137 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x1
001026137 7001_ $$0P:(DE-Juel1)169442$$aSchöffmann, Patrick$$b1
001026137 7001_ $$0P:(DE-Juel1)184662$$aBednarski-Meinke, Connie$$b2$$ufzj
001026137 7001_ $$0P:(DE-Juel1)186628$$aYin, Chenyang$$b3$$ufzj
001026137 7001_ $$0P:(DE-Juel1)191430$$aTober, Steffen$$b4$$ufzj
001026137 7001_ $$0P:(DE-Juel1)187095$$aQdemat, Asmaa$$b5$$ufzj
001026137 7001_ $$0P:(DE-Juel1)145895$$aPetracic, Oleg$$b6$$ufzj
001026137 7001_ $$0P:(DE-Juel1)169789$$aHussein, Mai$$b7$$ufzj
001026137 909CO $$ooai:juser.fz-juelich.de:1026137$$pVDB
001026137 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184662$$aForschungszentrum Jülich$$b2$$kFZJ
001026137 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186628$$aForschungszentrum Jülich$$b3$$kFZJ
001026137 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)191430$$aForschungszentrum Jülich$$b4$$kFZJ
001026137 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187095$$aForschungszentrum Jülich$$b5$$kFZJ
001026137 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145895$$aForschungszentrum Jülich$$b6$$kFZJ
001026137 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169789$$aForschungszentrum Jülich$$b7$$kFZJ
001026137 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0
001026137 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x1
001026137 9141_ $$y2024
001026137 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x0
001026137 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$kPGI-4$$lStreumethoden$$x1
001026137 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
001026137 980__ $$aposter
001026137 980__ $$aVDB
001026137 980__ $$aI:(DE-Juel1)JCNS-2-20110106
001026137 980__ $$aI:(DE-Juel1)PGI-4-20110106
001026137 980__ $$aI:(DE-82)080009_20140620
001026137 980__ $$aUNRESTRICTED
001026137 981__ $$aI:(DE-Juel1)JCNS-2-20110106