001026172 001__ 1026172
001026172 005__ 20250204113853.0
001026172 0247_ $$2doi$$a10.1002/hbm.26683
001026172 0247_ $$2ISSN$$a1065-9471
001026172 0247_ $$2ISSN$$a1097-0193
001026172 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-03325
001026172 0247_ $$2pmid$$a38647035
001026172 0247_ $$2WOS$$aWOS:001206019500001
001026172 037__ $$aFZJ-2024-03325
001026172 082__ $$a610
001026172 1001_ $$0P:(DE-Juel1)176497$$aWiersch, Lisa$$b0
001026172 245__ $$aSex classification from functional brain connectivity: Generalization to multiple datasets
001026172 260__ $$aNew York, NY$$bWiley-Liss$$c2024
001026172 3367_ $$2DRIVER$$aarticle
001026172 3367_ $$2DataCite$$aOutput Types/Journal article
001026172 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1715061714_19357
001026172 3367_ $$2BibTeX$$aARTICLE
001026172 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001026172 3367_ $$00$$2EndNote$$aJournal Article
001026172 500__ $$aFunding informationDeutsche Forschungsgemeinschaft (DFG),Grant/Award Numbers: 491111487,431549029; National Institute of MentalHealth, Grant/Award Number:R01-MH074457; the Helmholtz PortfolioTheme “Supercomputing and Modeling for theHuman Brain”; European Union's Horizon2020 Research and Innovation Programme,Grant/Award Number: 945539
001026172 520__ $$aMachine learning (ML) approaches are increasingly being applied to neuroimaging data. Studies in neuroscience typically have to rely on a limited set of training data which may impair the generalizability of ML models. However, it is still unclear which kind of training sample is best suited to optimize generalization performance. In the present study, we systematically investigated the generalization performance of sex classification models trained on the parcelwise connectivity profile of either single samples or compound samples of two different sizes. Generalization performance was quantified in terms of mean across-sample classification accuracy and spatial consistency of accurately classifying parcels. Our results indicate that the generalization performance of parcelwise classifiers (pwCs) trained on single dataset samples is dependent on the specific test samples. Certain datasets seem to "match" in the sense that classifiers trained on a sample from one dataset achieved a high accuracy when tested on the respected other one and vice versa. The pwCs trained on the compound samples demonstrated overall highest generalization performance for all test samples, including one derived from a dataset not included in building the training samples. Thus, our results indicate that both a large sample size and a heterogeneous data composition of a training sample have a central role in achieving generalizable results.Keywords: big data; generalizability; machine learning; neuroimaging; resting‐state functional connectivity; sex classification.
001026172 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001026172 536__ $$0G:(GEPRIS)491111487$$aDFG project 491111487 - Open-Access-Publikationskosten / 2022 - 2024 / Forschungszentrum Jülich (OAPKFZJ) (491111487)$$c491111487$$x1
001026172 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001026172 7001_ $$0P:(DE-Juel1)185938$$aFriedrich, Patrick$$b1$$ufzj
001026172 7001_ $$0P:(DE-Juel1)184874$$aHamdan, Sami$$b2$$ufzj
001026172 7001_ $$0P:(DE-Juel1)187351$$aKomeyer, Vera$$b3$$ufzj
001026172 7001_ $$0P:(DE-Juel1)131684$$aHoffstaedter, Felix$$b4$$ufzj
001026172 7001_ $$0P:(DE-Juel1)172843$$aPatil, Kaustubh R.$$b5$$ufzj
001026172 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon B.$$b6$$ufzj
001026172 7001_ $$0P:(DE-Juel1)172811$$aWeis, Susanne$$b7$$eCorresponding author$$ufzj
001026172 773__ $$0PERI:(DE-600)1492703-2$$a10.1002/hbm.26683$$gVol. 45, no. 6, p. e26683$$n6$$pe26683$$tHuman brain mapping$$v45$$x1065-9471$$y2024
001026172 8564_ $$uhttps://juser.fz-juelich.de/record/1026172/files/wiersch24.pdf$$yOpenAccess
001026172 8564_ $$uhttps://juser.fz-juelich.de/record/1026172/files/wiersch24.gif?subformat=icon$$xicon$$yOpenAccess
001026172 8564_ $$uhttps://juser.fz-juelich.de/record/1026172/files/wiersch24.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001026172 8564_ $$uhttps://juser.fz-juelich.de/record/1026172/files/wiersch24.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001026172 8564_ $$uhttps://juser.fz-juelich.de/record/1026172/files/wiersch24.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001026172 8767_ $$8W-2024-00489-b$$92024-08-13$$d2024-09-09$$eAPC$$jZahlung erfolgt
001026172 909CO $$ooai:juser.fz-juelich.de:1026172$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001026172 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176497$$aForschungszentrum Jülich$$b0$$kFZJ
001026172 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185938$$aForschungszentrum Jülich$$b1$$kFZJ
001026172 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184874$$aForschungszentrum Jülich$$b2$$kFZJ
001026172 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187351$$aForschungszentrum Jülich$$b3$$kFZJ
001026172 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131684$$aForschungszentrum Jülich$$b4$$kFZJ
001026172 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172843$$aForschungszentrum Jülich$$b5$$kFZJ
001026172 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b6$$kFZJ
001026172 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172811$$aForschungszentrum Jülich$$b7$$kFZJ
001026172 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001026172 9141_ $$y2024
001026172 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001026172 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001026172 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001026172 915pc $$0PC:(DE-HGF)0120$$2APC$$aDEAL: Wiley 2019
001026172 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001026172 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-08-25
001026172 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-25
001026172 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-08-25
001026172 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2023-08-25$$wger
001026172 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001026172 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-25
001026172 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001026172 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-25
001026172 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-19$$wger
001026172 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-19
001026172 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-19
001026172 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-08-08T17:07:28Z
001026172 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-08-08T17:07:28Z
001026172 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-08-08T17:07:28Z
001026172 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-19
001026172 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-19
001026172 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-19
001026172 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-19
001026172 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-19
001026172 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-19
001026172 920__ $$lyes
001026172 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
001026172 9801_ $$aFullTexts
001026172 980__ $$ajournal
001026172 980__ $$aVDB
001026172 980__ $$aUNRESTRICTED
001026172 980__ $$aI:(DE-Juel1)INM-7-20090406
001026172 980__ $$aAPC