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Abstract

Machine learning (ML) approaches are increasingly being applied to neuroimaging

data. Studies in neuroscience typically have to rely on a limited set of training data

which may impair the generalizability of ML models. However, it is still unclear which

kind of training sample is best suited to optimize generalization performance. In the

present study, we systematically investigated the generalization performance of sex

classification models trained on the parcelwise connectivity profile of either single

samples or compound samples of two different sizes. Generalization performance

was quantified in terms of mean across-sample classification accuracy and spatial

consistency of accurately classifying parcels. Our results indicate that the generaliza-

tion performance of parcelwise classifiers (pwCs) trained on single dataset samples is

dependent on the specific test samples. Certain datasets seem to “match” in the

sense that classifiers trained on a sample from one dataset achieved a high accuracy

when tested on the respected other one and vice versa. The pwCs trained on the

compound samples demonstrated overall highest generalization performance for all

test samples, including one derived from a dataset not included in building the train-

ing samples. Thus, our results indicate that both a large sample size and a heteroge-

neous data composition of a training sample have a central role in achieving

generalizable results.
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1 | INTRODUCTION

Machine learning (ML) is a powerful tool to relate neuroimaging data

to behavior and phenotypes (Genon et al., 2022; Varoquaux &

Thirion, 2014) and is therefore increasingly being employed in neuro-

science applications (Buch et al., 2018; Jollans et al., 2019; Kohoutova

et al., 2020; Varoquaux, 2018). Successful applications of ML

approaches include the decoding of mental states (Haynes &

Rees, 2006), classification of mental disorders (Chen et al., 2020;

Zhang et al., 2021), as well as the prediction of demographic and

behavioral phenotypes (More et al., 2023; Nostro et al., 2018;

Pläschke et al., 2020; Smith et al., 2015; Varikuti et al., 2018).

ML models learn the feature-target relationship given a training

sample. Subsequently, the model is applied to make predictions on

previously unseen data (Dhamala et al., 2023) and successful generali-

zation to independent data samples is the central goal in ML
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(Domingos, 2012; Varoquaux, 2018; Chung, 2018). For example, a

recent study (Weis et al., 2020) demonstrated successful generaliza-

tion of sex prediction models based on regionally specific functional

brain connectivity patterns, which were trained on the data of the

Human Connectome Project (HCP, Van Essen et al., 2012, Van Essen

et al., 2013). For this spatially specific approach, independent classi-

fiers were trained on the functional brain connectivity patterns of par-

cels covering the whole brain. In this case, assessing generalization

performance should not only consider the averaged across-sample

accuracy. Rather, if the classifiers generalize well, the same parcels

should achieve high classification accuracies during cross-validation

(CV) and across-sample testing.

Further sex classification studies (Menon & Krishnamurthy, 2019;

Smith, Vidaurre, et al., 2013; Zhang et al., 2018), as well as other appli-

cations of ML models employed the HCP dataset to predict pheno-

types such as task activation (Cohen et al., 2020), and individual

behavioral and demographic scores (Cui & Gong, 2018; Smith

et al., 2015) like age (Sanford et al., 2022). The HCP dataset is charac-

terized by high-quality multi-modal imaging data acquired from a large

group of healthy young adults. However, both the high quality of the

brain imaging data as well as the narrow age range is not typical of

other datasets, especially when dealing with clinical data

(Arslan, 2018; Jansma et al., 2020; Rutten & Ramsey, 2010). This

raises the question whether results based on the HCP data can be

generalized to other datasets with different characteristics. Weis et al.

(2020) demonstrated that sex classifiers trained on the HCP data gen-

eralized well to an independent subset of the HCP dataset as well as

to the 1000Brains dataset (Caspers et al., 2014). Additional evidence

from the application of such classifiers to data from datasets with

diverse characteristics would provide even stronger evidence of

model generalization.

Especially in neuroimaging, differences between datasets may

result from several different sources. On the one hand, participants

may differ with respect to demographic characteristics, such as age,

education, or economic status. On the other hand, data samples likely

differ with regard to the MRI acquisition parameters and data proces-

sing. Considering these differences, it is so far unresolved what kind

of training sample leads to good generalization performance across

multiple test samples.

Various characteristics of the training data can influence the gen-

eralization performance of ML models (Dhamala et al., 2023). For

instance, larger sample size is beneficial for generalization perfor-

mance (Cui & Gong, 2018; Domingos, 2012). Ensuring that the train-

ing data is representative of the target sample is another crucial factor

for achieving good generalization performance (Ishida, 2019; Yang

et al., 2020). Furthermore, data from different acquisition sites are

likely heterogeneous with respect to demographic characteristics,

data acquisition, and processing parameters. Due to the variability

across different datasets and sites, a ML model trained on a com-

pound of such data is more likely to capture the shared biological vari-

ability in all datasets while disregarding the variability resulting from

differences between the datasets. This distinction supports models

focusing solely on the biological variability independent of specific

dataset characteristics. Hence, such models are less likely to overfit

and more likely to generalize to new data. Thus, aggregating data from

multiple sites should be beneficial for improving generalization perfor-

mance. Indeed, this has been partially shown by studies concerning

clinical applications of ML approaches (Chang et al., 2018; Nielsen

et al., 2020; Willemink et al., 2020). These results suggest that training

ML models on diverse datasets covering a wide range of characteris-

tics may improve the overall generalization performance.

In the present study, we aimed to evaluate the generalization per-

formance of multiple sets of sex classification models derived from

different training samples. The different training samples were created

from four different datasets with varying demographic characteristics.

In addition, sex classifiers were trained on compound samples combin-

ing data from all datasets to obtain training samples with heteroge-

neous sample characteristics. Both compound samples comprise the

same ratios of datasets, sex and age distributions, but differ in sample

size to additionally assess the effect of training sample size. Following

the parcelwise approach by Weis et al. (2020), we trained indepen-

dent sex classifiers on the resting state (RS) connectivity patterns of

436 parcels covering the whole brain. For each parcel, a sex classifica-

tion model was built based on the individual connectivity profile,

resulting in one classification accuracy value per parcel. This was done

for each of the six training samples, resulting in six sets of parcelwise

classifiers (pwCs). These pwCs were applied to test samples from the

four original datasets and one dataset which was not part of the train-

ing samples. Then, accuracy maps, representing the spatial distribution

of classification accuracies for each parcel were generated for CV

(within-sample accuracy) and for application of the pwCs to the differ-

ent test samples (across-sample accuracy). The comparison of these

accuracy maps enabled us to evaluate generalization performance of

classifiers by (i) examining the mean accuracy of all pwCs across the

10% best classifying parcels and (ii) comparing the spatial location of

highly classifying parcels between CV and across-sample test. Good

generalization performance with regard to spatial consistency is char-

acterized by identical parcels performing well in CV and across-sample

testing. We hypothesized that the pwC trained on the compound

sample with a smaller sample size should outperform pwCs trained on

single samples due to the heterogeneous data composition, while the

compound sample with a higher sample size should achieve the over-

all best generalization performance (Chang et al., 2018; Cui &

Gong, 2018; Dhamala et al., 2023; Domingos, 2012; Nielsen

et al., 2020; Willemink et al., 2020).

2 | MATERIALS AND METHODS

2.1 | Data

We employed RS functional magnetic resonance imaging (fMRI) data

of subsets of four large datasets to train and test sex classification

models. For all datasets, we only included healthy subjects aged
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20 years or older. Within each training sample, we matched females

and males for age and included a similar number of women and men.

The first sample, taken from the HCP dataset (900 subjects data

release; Van Essen et al., 2012; Van Essen, 2013), comprised 878 sub-

jects with a mean age of 28.49 years (range: 22–37 years). The sec-

ond sample, taken from the Brain Genomics Superstructure Project

(GSP; Holmes et al., 2015) comprised 854 subjects with a mean age of

22.92 years (range: 21–35 years). The third sample was a subset from

the Rockland Sample of the Enhanced Nathan Klein Institute (eNKI;

Nooner et al., 2012), comprising 190 subjects with a mean age of

46.02 years (range: 20–83 years). The fourth sample, taken from the

1000Brains dataset (Caspers et al., 2014), comprised 1000 subjects

with a mean age of 61.18 years (range: 21–85 years). This sample was

included to examine generalization performance to an older sample. A

fifth sample (“compound854”) was constructed by combining subsam-

ples of the HCP, GSP, eNKI and 1000Brains samples, with a mean age

of 40.05 (range: 20–85), resulting in a sample size of 854 subjects.

This sample size is equal to the GSP sample, but larger than the eNKI

and lower than the HCP and 1000Brains samples, therefore repre-

senting an intermediate sample size compared to the other data sam-

ples. Another sixth sample (“compound2190”) was constructed by

combining 75% of the HCP, GSP, eNKI and 1000Brains samples

resulting in a sample size of 2190 subjects in total. The compound

2190 sample comprised a mean age of 40.10 years (range: 20–

85 years). Thus, both compound samples display a large difference in

sample size but ratios of dataset representation, sex and age distribu-

tion have been maintained. This allows us to evaluate the influence of

data composition compared to the sample size of a training sample on

the generalization performance of sex classification models.

RS fMRI data from an additional dataset was included to evaluate

classifiers on an additional independent sample. This sample com-

prised 370 subjects (214 females) with a mean age of 22.50 years

(range 20–26 years) from the AOMIC dataset (Snoek et al., 2021). It

was not additionally balanced for sex to maintain the maximum num-

ber of participants for evaluation. Data usage of the included datasets

was approved by the Ethics Committee of the Medical Faculty of the

Heinrich-Heine University Düsseldorf (4039, 5193, 2018-317-

RetroDEuA). All data was collected in research projects approved by a

local Review Board, for which all participants provided written

informed consent. All experiments were performed in accordance

with relevant guidelines and regulations.

2.2 | Data acquisition

2.2.1 | HCP

The RS fMRI data of the HCP dataset were acquired on a Siemens

Skyra 3 T MRI scanner with multiband echo-planar imaging with a

duration of 873 s and the following parameters: 72 slices; voxel size,

2 � 2 � 2 mm3; field of view (FOV), 208 � 180 mm2; matrix,

104 � 90; TR, 720 ms; TE, 33 ms; flip angle, 52� (https://www.

humanconnectome.org/storage/app/media/documentation/s1200/HCP_

S1200_Release_Reference_Manual.pdf). Participants were instructed to

lie in the scanner with eyes open, with a “relaxed” fixation on a white

cross on a dark background and think of nothing in particular, and to

not fall asleep (Smith, Beckmann, et al., 2013).

2.2.2 | GSP

RS data were acquired on a 3 T Tim Trio Scanner with a duration of

372 s and the following parameters: 47 slices; voxel size,

3 � 3 � 3 mm3; FOV, 216 mm; TR, 3 s; TE, 30 ms; flip angle, 85�.

During data acquisition, participants were instructed to lay still, stay

awake, and keep eyes open while blinking normally (https://static1.

squarespace.com/static/5b58b6da7106992fb15f7d50/t/5b68650d8

a922db3bb807a90/1533568270847/GSP_README_140630.pdf,

Holmes et al., 2015).

2.2.3 | eNKI

Participants in the eNKI dataset were underwent RS scanning for

650 s in a Siemens Magnetom Trio Tim sygno MR scanner with the

following parameters: 38 slices; voxel size, 3 � 3 � 3 mm3, FOV,

256 � 200mm2; TR, 2500 ms; TE, 30 ms; flip angle, 80�. Participants

were instructed to keep their eyes closed, relax their minds and not to

move (Betzel et al., 2014).

2.2.4 | 1000Brains

Subjects were scanned for 660 s on a Siemens TRIO 3 T MRI scanner

with the following parameters: 36 slices; voxel size,

3.1 � 3.1 � 3.1 mm3; FOV, 200 � 200 mm2; matrix, 64 � 64,

TR = 2.2 s; TE = 30 ms; flip angle, 90�. During RS data acquisition,

participants were instructed to keep their eyes closed and let the mind

wander without thinking of anything in particular (Caspers

et al., 2014).

2.2.5 | AOMIC

The AOMIC dataset includes two subsamples, PIOP1 and PIOP2,

comprising data of healthy university students scanned on a Philips

3 T scanner. Participants were instructed to keep their gaze fixated on

a fixation cross on the screen and let their thoughts run freely (Snoek

et al., 2021). Both samples were acquired with a voxel size of

3 � 3 � 3 mm3 and a matrix size of 80 � 80. While PIOP1 was

acquired for 360 s with multi-slice acceleration, 480 volumes and a

0.75 TR, PIOP2 was acquired for 480 s without multi-slice accelera-

tion, 240 volumes and a 2 s TR (further details in https://www.nature.

com/articles/s41597-021-00870-6/tables/10).

WIERSCH ET AL. 3 of 14

https://www.humanconnectome.org/storage/app/media/documentation/s1200/HCP_S1200_Release_Reference_Manual.pdf
https://www.humanconnectome.org/storage/app/media/documentation/s1200/HCP_S1200_Release_Reference_Manual.pdf
https://www.humanconnectome.org/storage/app/media/documentation/s1200/HCP_S1200_Release_Reference_Manual.pdf
https://static1.squarespace.com/static/5b58b6da7106992fb15f7d50/t/5b68650d8a922db3bb807a90/1533568270847/GSP_README_140630.pdf
https://static1.squarespace.com/static/5b58b6da7106992fb15f7d50/t/5b68650d8a922db3bb807a90/1533568270847/GSP_README_140630.pdf
https://static1.squarespace.com/static/5b58b6da7106992fb15f7d50/t/5b68650d8a922db3bb807a90/1533568270847/GSP_README_140630.pdf
https://www.nature.com/articles/s41597-021-00870-6/tables/10
https://www.nature.com/articles/s41597-021-00870-6/tables/10


2.3 | Data preprocessing

2.3.1 | HCP

RS data from the ‘HCP S1200 Release’ analyzed here was fully prepro-

cessed and denoised via the Connectome Workbench software. In short,

data were corrected for spatial distortions, head motion, B0 distortions

and were registered to the T1-weighted structural image (Smith,

Beckmann, et al., 2013). Concatenating these transformations with the

structural-to-MNI nonlinear warp field resulted in a single warp per time

point, which was applied to the timeseries to achieve a single resampling

in the 2 mm isotropic MNI space. Afterwards, global intensity normaliza-

tion was applied and voxels that were not part of the brain were masked

out. Locally noisy voxels as measured by the coefficient of variation were

excluded and all the data were regularized with 2 mm Full width half

maximum (FWHM) surface smoothing (Glasser et al., 2013; Smith,

Beckmann, et al., 2013). The temporal preprocessing included corrections

and removal of physiological and movement artifacts by an independent

component analysis (ICA) of the FMRIB's X-noisifier (FIX, Salimi-

Khorshidi et al., 2014). This method decomposes data into independent

components and identifies noise components based on a variety of spa-

tial and temporal features through pattern classification.

2.3.2 | GSP, eNKI, 1000Brains

RS data of the GSP, eNKI and 1000Brains samples were preprocessed

in the same way. Initially, FSL was used for the removal of noise and

motion artifacts by applying the FIX-denoising procedure (Jenkinson

et al., 2012; Salimi-Khorshidi et al., 2014) using the appropriate pre-

trained dataset for noise classification. As FIX does not include nor-

malization to MNI space, denoised data were further preprocessed

with SPM12 (SPM12 v6685, Wellcome Centre for Human Neuroim-

aging, 2018; https://www.fil.ion.ucl.ac.uk/spm/software/spm12/)

using Matlab R2014a (Mathworks, Natick, MA). For each subject, the

first four echo-planar-imaging (EPI) volumes were discarded and

the remaining ones were corrected for head movement by an affine

registration with two steps: First, the images were aligned to the first

image. Second, the images were aligned to the mean of all volumes.

The mean EPI image was spatially normalized to the MNI152 template

(Holmes et al., 1998) using the “unified segmentation” approach

(Ashburner & Friston, 2005) and the resulting deformation was

applied to the FIX-denoised images and resampled to 2 mm3.

2.3.3 | AOMIC

Fully preprocessed data was used provided via OpenNeuro, where it

was preprocessed using Fmriprep version 1.4.1 (Esteban et al., 2019;

Esteban et al., 2020), a Nipype based tool for reproducible preproces-

sing in neuroimaging data (Gorgolewski et al., 2011). Data were

motion corrected using mcflirt (FSLv5.0.9, (Jenkinson et al., 2002)) fol-

lowed by distortion correction by co-registering the functional image

to the respective T1 weighted image with inverted intensity

(Huntenberg, 2014; Wang et al., 2017) with six degrees of freedom,

using bbregister (FreeSurfer v6.0.1). In a following step, motion cor-

rection transformations, field distortion correction warp, BOLD-to-

T1-weighted transformation and the warp from T1-weighted to MNI

were concatenated and applied using antsApplyTransforms (ANTs

v2.1.0.) using Lanczos interpolation (Snoek et al., 2021).

2.4 | Connectome extraction

Following the parcelwise approach by Weis et al. (2020), individual RS

connectomes were extracted based on 400 cortical parcels of the

Schaefer Atlas (Schaefer et al., 2018), and 36 subcortical parcels of

the Brainnetome Atlas (Fan et al., 2016). Each parcel's time series was

cleaned by excluding variance that could be explained by mean white

matter and cerebrospinal fluid signal (Satterthwaite et al., 2013). Data

was not further cleaned for motion related variance as this variance

was already removed during FIX preprocessing. For each of the

436 parcels, the activation time series was computed as the mean of

all voxel time courses within that parcel. Then, for each parcel, pair-

wise Pearson correlations were computed between the parcel's time

series and those of all other 435 remaining parcels, representing the

individual RS functional connectivity (RSFC) profile of the parcel.

2.5 | Parcelwise sex classification

Sex classification models were trained based on the individual multi-

variate RSFC profile of each parcel. Specifically, the connectivity

values between each parcel and the 435 remaining parcels were used

as features to train a sex classification model per parcel, resulting in a

set of 436 pwC (Weis et al., 2020). Since each model provides one

final accuracy value, one pwC provides an accuracy map covering the

entire brain. Training sex classification models based on the connec-

tivity profile of each parcel allows for a reduction of the feature

dimensionality for each model (1 � 436) as compared to training one

model based on the overall connectivity profile (436 � 436). Further-

more, using this parcelwise approach allows us to identify the highest

classifying brain regions. In the following steps, we evaluated generali-

zation performance in terms of classification accuracies and spatial

consistency of highly classifying parcels across the entire brain.

All models were built using support vector machine (SVM) classi-

fiers. SVM is a supervised ML method that separates the data into dis-

tinct classes with the widest possible gap between these classes

(Boser et al., 1992; Rafi & Shaikh, 2013; Vapnik, 1998; Zhang

et al., 2021). Based on its operational principles regarding a supervised

binary classification task and successful applications in previous sex

classification studies (Flint et al., 2020; Weis et al., 2020; Wiersch

et al., 2023), SVM is a suitable method for the present task. SVM

models were built in Julearn (Hamdan et al., 2023; https://juaml.

github.io/julearn/main/index.html) including a hyperparameter search

nested within a 10–fold CV with five repetitions. The parameter
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search included choice of kernel (linear vs. radial basis function (rbf)

kernel) as well as the hyperparameters gamma and C, which is used to

set the strength of regularization (https://scikit-learn.org/stable/auto_

examples/svm/plot_svm_scale_c.html). The SVM algorithm used in

the present study incorporates a squared L2 regularization. The regu-

larization parameter controls the trade-off between the model fit to

the training data and generalizable predictions beyond the training

data in order to avoid overfitting and to optimize model performance

and generalizability (https://scikit-learn.org/stable/modules/generat

ed/sklearn.svm.SVC.html).

Confounding effects of age were regressed out in a CV-consistent

manner by removing age-related variance before training the classifiers.

By estimating confound regression models only for training subsets and

applying them to training and test sets, leakage of information from test

to training data within the CV-process can be avoided (More

et al., 2021). The best performing combination of hyperparameters was

used for the final model for each individual parcel. Within-sample classifi-

cation accuracy for each individual parcel was determined by averaging

accuracies over CV folds and repetitions.

For a cross-sample classification, single dataset pwCs were tested

on the respective other three samples, while pwC compound 854 and

pwC compound 2190 were tested on the remaining 25% of the HCP

(n = 220, mean age: 29.68, age range: 22–36), GSP (n = 214, mean

age: 22–72, age range: 21–31), eNKI (n = 48, mean age: 47.52, age

range: 20–75) and 1000Brains (n = 250, mean age: 52.08, age range:

22–80) sample. Here, for computing time reasons, we restricted the

choice of the SVM kernel to rbf (see Weis et al., 2020). Finally, gener-

alization performance of all six pwCs was assessed on the AOMIC

sample. All reported accuracies are balanced accuracies.

2.6 | Statistical analyses

2.6.1 | Across-sample classification accuracy

To statistically compare the classification accuracies of pwCs across

the different test samples, we employed independent t-tests between

the different across-sample accuracies over the respectively 10%

highest classifying parcels. Additional analyses using all 436 parcels

are reported in the supplements (Table S3 and below).

Significance levels were Bonferroni-corrected according to the

number of dependent tests (15 dependent tests for comparing across-

sample accuracies of all six pwCs on the AOMIC test sample,

10 dependent tests for comparing the across-sample accuracy of both

compound pwCs for the five test samples and for comparing pwC per-

formances against each other for each of the five test samples; six

dependent tests for all other comparisons).

2.6.2 | Consistency of highly classifying brain
regions

Previous studies have demonstrated that sex classification accuracies

for models trained on parcelwise RSFC patterns do not achieve

uniformly high performance across the whole brain (Weis et al., 2020;

Zhang et al., 2018). Thus, we assessed generalization performance of

the different pwCs by examining the consistency of highly classifying

brain regions during CV and across-sample testing. Consistency was

assessed by computing Dice coefficients (DSC) to evaluate the similar-

ity in spatial distribution of parcels achieving certain accuracies in

both CV and across-sample testing. This consistency was evaluated

for different accuracy thresholds above chance (0.5–0.7 at 0.02

steps). For each threshold, Dice coefficients were computed as the

number of common parcels achieving within- and across-sample accu-

racies above or equal to that threshold (p_com) multiplied by 2 and

divided by the total number of parcels achieving a within (p_tr) or

across-sample (p_te) accuracy above or equal to that accuracy level in

CV (Dice, 1945; Sorensen, 1948).

DSC¼ 2�p_com
p_trþp_te

To facilitate comparison of the dice score distributions between

the different pwCs and test samples, we summarized each contribu-

tion into one score by computing a weighted mean (wmDice) as the

average of each dice coefficient weighted by the accuracy threshold

for which the respective dice coefficient was calculated.

3 | RESULTS

The generalization performance of pwCs trained on each of the sin-

gle dataset samples (HCP, GSP, eNKI, & 1000Brains) and on both

compound samples were compared with respect to mean across-

sample accuracy averaged across the best 10% classifying parcels.

Additionally, we evaluated the consistency of the spatial distribu-

tion of accurately classifying parcels between CV and across-

sample testing to determine whether pwCs trained on compound

samples exhibit more generalizable results in contrast to pwCs

trained on single samples.

3.1 | Training and test classification accuracies

For the single samples pwCs, the mean within-sample performance

across the top 10% classifying parcels was at a similar level for pwC

GSP (66.8%), pwC eNKI (66.9%) and pwC 1000Brains (66.3%) and

ranged up to 73.5% for pwC HCP. The mean across-sample accuracies

averaged for the top 10% classifying parcels ranged between 58.4%

(for pwC HCP tested on AOMIC and pwC eNKI tested on 1000Brains)

and 65.8% (for pwC GSP tested on eNKI). Details for within- and

across-sample performance are reported in Table S1 and Figure 1

and Figure S1. Parcelwise within- and across-sample accuracies are

displayed as accuracy maps in Figure 1a and the distribution of test

accuracies is shown in Figure 3 (red boxplots). Here, accuracy maps

represent the spatial distribution of classification accuracies resulting

from the 436 individual ML models trained on the respective multivar-

iate RSFC profile of each parcel.
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Accuracy maps for the different combinations of training and

test samples were compared using independent t-tests across the

top 10% classifying parcels in each prediction (details in Table S2).

First, we analyzed differences in classification accuracies between

test samples for each pwC (horizontal comparisons, Figure 1): For

pwC HCP, testing on 1000Brains achieved the highest mean classifi-

cation accuracy (59.8%). The averaged accuracy for this test sample

was descriptively higher than for the GSP and significantly higher

than for the eNKI and AOMIC test samples. PwC GSP achieved sig-

nificantly higher accuracies for the eNKI test sample (65.8%) than for

any other test sample, while pwC eNKI showed highest accuracies

for the GSP test sample (60.7%). This across-sample prediction

showed descriptively higher accuracies than pwC eNKI did for the

HCP test sample and significantly higher accuracies than for the

F IGURE 1 Accuracy maps and tile plots of mean accuracies of top 10% classifying parcels for parcelwise classifiers (pwCs) trained on single
samples. (a) Spatial distribution of parcelwise sex classification accuracies across the brain. Within-sample accuracies are depicted on and across-
sample accuracies off the diagonal. Only parcels with an accuracy of 0.5 or higher are displayed. (b) Mean accuracies averaged across the top 10%
classifying parcels for each cross-validation (CV) and across-sample prediction.

6 of 14 WIERSCH ET AL.



AOMIC and 1000Brains samples. For pwC 1000Brains, testing on

the HCP showed significantly higher accuracies (64.8%) than testing

on the eNKI, GSP and AOMIC sample. Details of all statistical com-

parisons are given in Table S2.

PwC compound854 achieved a mean within-sample accuracy of

65.3% for the top 10% classifying parcels, while mean across-sample

accuracies of the highest classifying parcels ranged between 62.4%

(pwC compound854 tested on AOMIC) and 71.8% (pwC com-

pound854 tested on eNKI, further details in Table S1 and Figure 2,

Figure S2). PwC compound2190 achieved a mean within-sample

accuracy of 67.9% within the top 10% classifying parcels. The mean

across-sample accuracies averaged across the top 10% classifying par-

cels ranged between 65.5% (pwC compound2190 tested on AOMIC)

and 74.6% (pwC compound2190 tested on eNKI, details in Table S1

and Figure 2, Figure S2).

Contrasting the top 10% classifying parcels in the accuracy maps

of pwC compound854 and pwC compound2190 displayed peaks in

accuracies for the eNKI test sample (71.8% and 74.6%) resulting

in significantly higher accuracies than for the remaining test samples,

respectively (Figure 2 and Table S2). We also contrasted how the six

pwCs performed on each test sample by employing independent

t-tests: pwC compound 854 outperformed all pwCs trained on single

samples for all test samples, except for the AOMIC test sample,

where pwC GSP achieved higher accuracies within the best 10%

classifying parcels (Table S2). PwC compound 2190 outperformed all

other pwCs for the HCP, GSP, eNKI and AOMIC test sample with

regards to the top 10% classifying parcels in each across-sample pre-

diction (Figure 2). Details for all statistical comparisons are shown in

Table S2.

3.2 | Consistency of correctly classifying parcels

To evaluate the spatial consistency of accurately classifying parcels,

we calculated the dice coefficient between thresholded within- and

across-sample accuracy maps at different levels of accuracy. Here, a

high dice coefficient indicates a high overlap in highly classifying par-

cels between within and across-sample predictions at a given accuracy

level. The results are depicted in the blue bar plots in Figure 3.

Regarding spatial consistency within a given pwC (horizontal compari-

son in Figure 3), pwC HCP overall demonstrated relatively low spatial

consistency while it was highest for 1000Brains (wmDice = 0.1765,

all other wmDice <0.1112). Spatial consistency for pwC GSP was

highest for the eNKI sample (wm = 0.3103) and lowest for

1000Brains (wmDice = 0.1810) with spatial consistency for HCP

(wmDice = 0.2407) and AOMIC (wmDice = 0.2607) test samples

ranging in between. PwC eNKI showed overall low spatial consistency

for the HCP, 1000Brains and AOMIC sample (wmDice: 0.1244–

0.1523) and highest for the GSP sample (wmDice = 0.2072). Spatial

consistency of pwC 1000Brains was lower for the GSP, eNKI and

AOMIC test sample (wmDice: 0.1201–0.1853) but considerably

higher for the HCP test sample (wmDice = 0.3159). Spatial consis-

tency of pwC compound854 ranged between 0.2865–0.3221 for the

HCP, GSP, eNKI and 1000Brains sample and achieved 0.2546 for

the AOMIC sample. PwC compound2190 demonstrated a relatively

similar spatial consistency for HCP, GSP, eNKI and 1000Brains

(wmDice: 0.3641–0.4168) and lower spatial consistency with the

AOMIC sample (wmDice = 0.2960). Concerning the comparisons

within each test sample (vertical comparisons in Figure 3) pwC com-

pound854 demonstrated higher spatial consistency than single sample

F IGURE 2 Accuracy maps and tile plots of mean accuracies of top 10% classifying parcels for parcelwise classifiers (pwC) compound 854 and
pwC compound 2190. (a) Spatial distribution of parcelwise sex classification accuracies across the brain. Only parcels with an accuracy of 0.5 or
higher are displayed. (b) Mean accuracies averaged across the top 10% classifying parcels for the respective cross-validation (CV)- (first column)
and across-sample predictions.
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pwCs for the HCP, GSP and 1000Brains test samples and pwC com-

pound2190 demonstrated higher spatial consistency than the other

six pwCs. Dice coefficients for the top 10% classifying parcels are

reported in Figure S3.

4 | DISCUSSION

In the present study, we examined the generalization performance of

parcelwise sex classification models trained on different samples.

Here, we operationalized generalization performance in terms of both

mean classification accuracy of best classifying parcels during across-

sample testing as well as spatial consistency in highly classifying

parcels between CV and across-sample testing. Since not all parcels

are expected to achieve high classification accuracies (Weis

et al., 2020; Zhang et al., 2018), we mainly focused on the top 10%

classifying parcels. Overall, our results showed that classifiers trained

on single dataset samples generalized well only for certain test sam-

ples. In contrast, classifiers trained on the compound samples tend to

outperform classifiers trained on single dataset samples both in terms

of accuracy and consistency of accurately classifying parcels.

To evaluate generalization performance with respect to mean

classification accuracies of the top 10% classifying parcels, for each

pwC, we compared across-sample classification accuracies between

the different test samples. Results indicate that certain datasets seem

to “match” in the sense that classifiers trained on a sample from one

F IGURE 3 Spatial consistency of all parcelwise classifiers (pwCs). For each combination of training (rows) and test sample (columns), the right
side of each subplot (red boxplot) depicts the distribution of accuracies across all parcels (right y-axis). The left side of each subplot (blue barplot)
shows the dice coefficients (left y-axis), representing the overlap of accuracy maps between cross-validation (CV) and test predictions at different
accuracy levels (x-axis). For each accuracy-threshold, the respective dice coefficient was calculated as the number of similar parcels classifying

above a certain accuracy-threshold in both, respective CV and test prediction, in relation to the total number of parcels of both predictions
classifying at this level. For each combination of pwC and test sample, the weighted mean of the dice coefficients (wmDice) across accuracy levels
is displayed above the subplot to allow for a straightforward comparison between the distributions of dice coefficients.
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of the datasets achieved a high accuracy when tested on the respec-

tive other one and vice versa. This was the case for HCP and

1000Brains as well as for GSP and eNKI with the former matching the

results of a previous study (Weis et al., 2020). Based on the good

across-sample performance of sex classifiers trained on an HCP sam-

ple on a subsample of the 1000Brains, Weis et al. (2020) suggested

that parcelwise sex classification generalizes well between different

samples. No additional samples from other datasets were considered

in Weis et al. (2020). The present results extend the findings of the

previous study by showing that good generalization performance of

the HCP classifiers appears to be specific to the 1000Brains sample.

Generalization to samples from other datasets (GSP, eNKI and

AOMIC) is, however, rather poor. Thus, our study demonstrates that

the generalizability of pwCs trained on single dataset samples

depends on the train-test data combination, which is in line with a

previous study that employed sex classification based on regional

homogeneity of RS time series (Huf et al., 2014). The limited generali-

zation performance of the pwCs trained on single dataset samples to

the majority of test samples from other datasets might be attributed

to the homogeneity of each single dataset training sample arising due

to demographic factors such as the age range (Damoiseaux, 2017;

Damoiseaux et al., 2008; Scheinost et al., 2015) as well as technical

details such as fMRI acquisition parameters (Brown et al., 2011; Yu

et al., 2018). Homogeneous data characteristics within each dataset

will result in a homogeneity of the feature space on which ML models

are trained. Such homogeneous features might lead the ML model to

learn dataset-specific characteristics that are predictive of the target

variable, which might not translate to other test samples, resulting in

inaccurate across-sample predictions (Huf et al., 2014). Thus, training

ML models on a single, homogenous sample may not be ideal to

achieve a good generalization performance on diverse test samples

(Belur Nagaraj et al., 2020; Di Tanna et al., 2020; Huf et al., 2014;

Janssen et al., 2018). In contrast, training classifiers on a combination

of multiple datasets (pwC compound854 and pwC compound2190)

achieved significantly higher accuracies for all test samples, including

the sample from a dataset which was not included in the compound

training sample. We contrasted performances of both pwCs trained

on compound samples to evaluate potential sample size effects. Here,

pwC compound854 demonstrated higher accuracies and spatial con-

sistency in the majority of across-sample predictions compared to sin-

gle sample pwCs, but did not outperform pwC compound2190. These

results suggest that the sample size of the training sample is an impor-

tant factor in determining the generalization performance of ML ana-

lyses. These results align with the findings of several other studies

highlighting the importance of the sample size in ensuring accurate

ML results (Cui & Gong, 2018; Dhamala et al., 2023; Domingos, 2012;

Ishida, 2019; Yang et al., 2020). However, pwC compound854 still

predominantly demonstrated a higher generalization performance

compared to single sample pwCs with a similar or even higher sample

size. Thus, it is evident that the composition of a training sample is

crucial in ensuring generalizable ML results, as reported by previous

studies (Chang et al., 2018; Huf et al., 2014; Willemink et al., 2020).

While a high sample size is beneficial to assure reliable and accurate

ML predictions (Dhamala et al., 2023), the heterogeneity and repre-

sentativeness of a composite sample led to significantly better results

than single sample pwCs with a higher sample size in the present ML

analyses. Thus, the high generalization performance of both com-

pound samples is not only attributable to the sample size but also to

the heterogeneity of data characteristics included in a training sample

created from various datasets. This heterogeneity likely enables the

model to learn patterns that do not rely on specific sample character-

istics, but actually capture the underlying relationship between fea-

tures and target, enabling the model to generalize better, even to data

from datasets that were not included in training. Therefore, the het-

erogeneity of a composite training sample is essential for generaliz-

able ML outcomes and may also serve to minimize sample-specific

biases (Li et al., 2022). Thus, training on a compound sample compris-

ing the variability of multiple datasets is preferable to training on sin-

gle dataset samples in order to achieve high generalization

performances (Chang et al., 2018; Huf et al., 2014; Willemink

et al., 2020).

While undesirable sources of variability, e.g. due to scanner dif-

ferences, may be accounted for by using data harmonization (Fortin

et al., 2017; Yu et al., 2018), in the present study we intentionally

refrained from using harmonization techniques. Here, we evaluated

the generalization performances of differently trained pwCs in order

to determine which may generalize best to unseen data. Harmoniza-

tion techniques such as ComBat are not suitable for this purpose

because they require a sufficient amount of data from each sample

and site (Orlhac et al., 2022).

The parcelwise classification approach allowed us to investigate

generalization performance not only in terms of accuracy but also

with respect to the spatial distribution of accurately classifying par-

cels. To quantify the overlap of accurately classifying parcels between

CV and across-sample testing, we computed dice coefficients

between within- and across sample accuracy maps at different accu-

racy thresholds. We observed a pattern similar to the one found for

classification accuracies, with the train-test pairing of HCP and

1000Brains and GSP and eNKI, respectively, showing highest spatial

consistency, relative to other combinations. Thus, also when consider-

ing spatial consistency, generalization performance depended on the

specific pairing of training and test datasets. For pwCs trained on sin-

gle samples, training sample characteristics appeared to be the most

important factor in driving generalization performance across test

samples. In contrast, pwC compound854 achieved superior spatial

consistency in most test samples and pwC compound2190 in all test

samples, as compared to pwCs trained on single samples. Thus, the

classifiers trained on the compound samples achieved both higher

classification accuracies as well as more consistency in accurately clas-

sifying parcels as opposed to the classifiers trained on single dataset

samples. Altogether, the high generalization performance for pwC

compound854 and pwC compound2190 can likely be attributed to

the data heterogeneity in the respective training samples which was

achieved by combining multiple samples for training. These findings

match results of previous studies (Chang et al., 2018; Huf et al., 2014;

Nielsen et al., 2020; Willemink et al., 2020).
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Overall, the aggregation of multiple samples in pwC com-

pound854 and pwC compound2190 for training sex classifiers

resulted in superior generalization performance compared to pwCs

trained on single samples. Firstly, the classification accuracies were

comparable between CV and the different across-sample test classifi-

cations. Secondly, highly classifying parcels overlapped to a large

degree between training and test. The overall high generalization per-

formance of pwC compound2190 across all test samples could be

attributed to several possible explanations: first, the compound2190

sample is more than twice as large as compared to any of the single

dataset samples. Such high sample size has been shown to be benefi-

cial for generalization (Cui & Gong, 2018; Domingos, 2012;

Ishida, 2019; Yang et al., 2020). However, sample size alone is likely

not sufficient to explain the high generalization performance. For

instance, the eNKI sample consists of only 190 participants, but the

classifiers trained on this sample achieved better generalization per-

formance than those trained on the HCP sample, which included

878 participants. In addition, analyses with pwC compound854 also

demonstrated a superior generalization performance with respect to

classification accuracies as well as spatial consistency compared

to single sample pwCs, despite the smaller sample size. A second

explanation for the good performance of both compound pwCs may

lie in the heterogeneous nature of its training sample as discussed

above. Having the different samples represented within the com-

pound sample may have allowed the classifiers to classify sex based

on sample-unspecific information. Another potential explanation is

that the training samples of pwC compound854 and pwC com-

pound2190 partially consist of data from datasets on which we evalu-

ated the test performance. In general, training on data that is

representative of the test data typically results in an increased gener-

alization performance (Chung et al., 2018). Here, both training sam-

ples for the compound pwCs composed data from four different

datasets. Although each dataset had a different sample size and thus a

different share in the respective compound training sample, the model

applications to the eNKI test sample showed highest accuracies for

the best 10% classifying parcels. This result stems from few parcels

classifying at a high level for the eNKI test data (up to 83%), resulting

in such a high mean accuracy for the top 10% parcels (Figure 2). Fur-

thermore, the mean accuracy averaged across all 436 parcels confirms

that there are only few parcels responsible for the high accuracy in

the top 10% parcels, as the eNKI dataset did not exhibit the overall

highest mean accuracy across all parcels.

In contrast to both compound pwCs, CV and across sample test

performances differed considerably for pwCs trained on single dataset

samples. This lack of generalization performance was especially appar-

ent for pwC HCP which showed a rather high performance during CV

in combination with the lowest generalization performance both with

respect to accuracy and spatial consistency. While homogeneity of a

data sample has been argued to lead to high CV classification accuracy

(Huf et al., 2014), sample characteristics such as the age range were

comparable between HCP and the GSP sample, with the latter outper-

forming HCP in generalization performance. Thus, the comparably

poor performance of classifiers trained on the HCP sample may be

partially attributed to sample homogeneity but also to other factors

such as the differences in preprocessing pipelines. For the HCP sam-

ple, connectome extraction was based on the FIX denoised prepro-

cessed version of the data. The eNKI, GSP and 1000Brains samples

were preprocessed using the same pipeline in FSL/SPM12 also includ-

ing FIX-denoising, while the AOMIC sample was preprocessed using

fMRIprep without FIX. Given that comparative performance evalua-

tion of fMRI data is sensitive to preprocessing decisions (Bhagwat

et al., 2021), it is likely that this difference in preprocessing may con-

tribute to the poor generalization performance of pwC HCP when

tested on the other single samples. Furthermore, the high within-

sample accuracy coupled with the lack of generalization performance

may also indicate an overfitting effect of pwC HCP during training

(Cui & Gong, 2018; Domingos, 2012).

The present study, however, does not primarily aim to build a

classifier attaining highest sex classification accuracies but rather to

evaluate the impact of the training sample in ML models, particularly

the size and composition of the training sample.

Altogether, our results highlight the importance of the sample size

and also a heterogeneous, diverse, and representative data composi-

tion for training ML models (Cui & Gong, 2018; Dhamala et al., 2023;

Domingos, 2012; Gong et al., 2019; Li et al., 2022), which can be

achieved by combining data from multiple sites and datasets (Chang

et al., 2018; Nielsen et al., 2020; Willemink et al., 2020). By minimizing

sample-specific biases, we can aim for maximizing the generalizability

of ML models.

4.1 | Limitations

The present results consistently demonstrated the superior generaliz-

ability of sex classifiers trained on compound samples as compared to

those trained on single dataset samples, but they come with some lim-

itations. First of all, the high spatial consistency of pwC com-

pound2190 might partially be attributed to the generally higher

accuracy of the across-sample predictions. Dice coefficients across

the top 10% classifying parcels showed a more differentiated pattern.

Here, pwC compound2190 did not always outperform pwCs trained

on single samples. Overall, the predominantly higher generalization

performance of pwC compound2190 can be attributed to the sample

size and sample composition of its training sample. However, an addi-

tional systematic study would be required to determine the exact

degree to which each factor contributes to high generalization

performance.

Another limitation in the present study is that, while we

accounted for age as a potential confound during training of the clas-

sifiers, there might be other confounds that were not considered. For

example, we did not control for structural variables such as brain size,

which have been reported to influence brain functions (Batista-Gar-

cia-Ramo & Fernandez-Verdecia, 2018) and RS brain connectivity in

particular (Zhang et al., 2018). Thus, in principle, different distributions

of brain size within the different samples might have influenced the

present results. However, Weis et al. (2020) demonstrated that at
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least with their training sample, classification based on RS connectiv-

ity was not systematically influenced by brain size. Still, there might

be other demographic variables which differ between samples and

might influence classification accuracies (Li et al., 2022; Mehrabi

et al., 2021; Sripada et al., 2021).

A further limitation of the present study is the potential impact of

different preprocessing approaches which may affect the outcomes in

ML analyses. In neuroimaging data, there can be various sources of

noise and artifacts. Prior to data analysis, it is necessary to preprocess

the data to mitigate these issues and enhance the data quality. How-

ever, the impact of preprocessing steps on the outcomes of fMRI ana-

lyses has been well documented. For instance, conceptually similar

preprocessing packages such as AFNI, FSL, or SPM can produce dif-

ferences in fMRI results (Bowring et al., 2019). Differences on the

level of preprocessing steps may also produce dissimilarities

(Carp, 2012). Even differences in the order of preprocessing steps can

lead to differences in the graph theoretical outcomes derived from RS

functional connectivity (Gargouri et al., 2018). Thus, it is plausible that

discrepancies in preprocessing pipelines may lead to differences in

classification outcomes. Indeed, one study that compared ML results

for patient and healthy control classification across different prepro-

cessing pipelines indicated differences in the classification accuracy

(Vergara et al., 2017). Overall, while different preprocessing

approaches may lead to differences in the fMRI and ML results, in the

present study these differences represent an additional source of vari-

ance that may occur when using data of various datasets. Despite var-

ious potential sources of variance within the training samples of the

compound pwCs, pwC compound854 and pwC compound2190 dem-

onstrate a comparatively good performance compared to the single

sample pwCs. While it is reasonable to anticipate that aligned prepro-

cessing approaches may improve predictions; however, conducting a

systematic evaluation on the effect of preprocessing pipelines is

beyond the scope of the present study and remains an important

open question for future research.

Another factor which has not been considered in the present ana-

lyses are fluctuating sex hormones, which have been shown to influ-

ence functional brain connectivity in RS (Arélin et al., 2015; Haraguchi

et al., 2021; Weis et al., 2019). These dynamic changes in female and

male connectivity patterns (Coenjaerts et al., 2023; Kogler

et al., 2016; McEwen & Milner, 2017) will likely influence overall sex

classification accuracies. However, unfortunately, most publicly avail-

able datasets do not provide information on hormone levels, making it

impossible to consider these variations in the analyses. Future large-

scale studies should include hormone levels in data acquisition,

enabling model training on a combination of multiple independent

datasets with well characterized phenotypes to achieve most accurate

results.

5 | CONCLUSION

The present results show that parcelwise sex classification models

generalize best when trained on a compound sample including data

with different demographic and data acquisition characteristics. Our

results demonstrate that a large and heterogeneous training sample

including multiple datasets is best suited to achieve accurate generali-

zation performance. This observation carries practical implications for

future neuroimaging studies employing ML models for generalizable

predictions.
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