001026179 001__ 1026179
001026179 005__ 20250204113853.0
001026179 0247_ $$2doi$$a10.1021/acs.inorgchem.4c00229
001026179 0247_ $$2ISSN$$a0020-1669
001026179 0247_ $$2ISSN$$a1520-510X
001026179 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-03327
001026179 0247_ $$2pmid$$a38688036
001026179 0247_ $$2WOS$$aWOS:001227933500001
001026179 037__ $$aFZJ-2024-03327
001026179 082__ $$a540
001026179 1001_ $$00000-0003-0455-3051$$aBanik, Ananya$$b0$$eCorresponding author
001026179 245__ $$aExploring Layered Disorder in Lithium-Ion-Conducting $Li_3Y_{1–x}In_xCl_6$
001026179 260__ $$aWashington, DC$$bAmerican Chemical Society$$c2024
001026179 3367_ $$2DRIVER$$aarticle
001026179 3367_ $$2DataCite$$aOutput Types/Journal article
001026179 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1724055322_8311
001026179 3367_ $$2BibTeX$$aARTICLE
001026179 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001026179 3367_ $$00$$2EndNote$$aJournal Article
001026179 520__ $$aLi3Y1–xInxCl6 undergoes a phase transition from trigonal to monoclinic via an intermediate orthorhombic phase. Although the trigonal yttrium containing the end member phase, Li3YCl6, synthesized by a mechanochemical route, is known to exhibit stacking fault disorder, not much is known about the monoclinic phases of the serial composition Li3Y1–xInxCl6. This work aims to shed light on the influence of the indium substitution on the phase evolution, along with the evolution of stacking fault disorder using X-ray and neutron powder diffraction together with solid-state nuclear magnetic resonance spectroscopy, studying the lithium-ion diffusion. Although Li3Y1–xInxCl6 with x ≤ 0.1 exhibits an ordered trigonal structure like Li3YCl6, a large degree of stacking fault disorder is observed in the monoclinic phases for the x ≥ 0.3 compositions. The stacking fault disorder materializes as a crystallographic intergrowth of faultless domains with staggered layers stacked in a uniform layer stacking, along with faulted domains with randomized staggered layer stacking. This work shows how structurally complex even the “simple” series of solid solutions can be in this class of halide-based lithium-ion conductors, as apparent from difficulties in finding a consistent structural descriptor for the ionic transport.
001026179 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001026179 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001026179 7001_ $$aSamanta, Bibek$$b1
001026179 7001_ $$aHelm, Bianca$$b2
001026179 7001_ $$0P:(DE-Juel1)192207$$aKraft, Marvin$$b3$$ufzj
001026179 7001_ $$aRudel, Yannik$$b4
001026179 7001_ $$0P:(DE-Juel1)172659$$aLi, Cheng$$b5
001026179 7001_ $$00000-0001-7114-8051$$aHansen, Michael Ryan$$b6
001026179 7001_ $$00000-0002-3094-303X$$aLotsch, Bettina V.$$b7
001026179 7001_ $$00000-0003-3575-0517$$aBette, Sebastian$$b8$$eCorresponding author
001026179 7001_ $$0P:(DE-Juel1)184735$$aZeier, Wolfgang G.$$b9$$eCorresponding author
001026179 773__ $$0PERI:(DE-600)1484438-2$$a10.1021/acs.inorgchem.4c00229$$gp. acs.inorgchem.4c00229$$n19$$p86988709$$tInorganic chemistry$$v63$$x0020-1669$$y2024
001026179 8564_ $$uhttps://juser.fz-juelich.de/record/1026179/files/revised_Manuscript.pdf$$yOpenAccess
001026179 8564_ $$uhttps://juser.fz-juelich.de/record/1026179/files/revised_Manuscript.gif?subformat=icon$$xicon$$yOpenAccess
001026179 8564_ $$uhttps://juser.fz-juelich.de/record/1026179/files/revised_Manuscript.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001026179 8564_ $$uhttps://juser.fz-juelich.de/record/1026179/files/revised_Manuscript.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001026179 8564_ $$uhttps://juser.fz-juelich.de/record/1026179/files/revised_Manuscript.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001026179 909CO $$ooai:juser.fz-juelich.de:1026179$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001026179 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)192207$$aForschungszentrum Jülich$$b3$$kFZJ
001026179 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184735$$aForschungszentrum Jülich$$b9$$kFZJ
001026179 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001026179 9141_ $$y2024
001026179 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-25
001026179 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-25
001026179 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001026179 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-30$$wger
001026179 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-30
001026179 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-30
001026179 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-30
001026179 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-30
001026179 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-30
001026179 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINORG CHEM : 2022$$d2024-12-30
001026179 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-30
001026179 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-30
001026179 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-30
001026179 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001026179 980__ $$ajournal
001026179 980__ $$aVDB
001026179 980__ $$aUNRESTRICTED
001026179 980__ $$aI:(DE-Juel1)IEK-12-20141217
001026179 9801_ $$aFullTexts
001026179 981__ $$aI:(DE-Juel1)IMD-4-20141217