001     1026179
005     20250204113853.0
024 7 _ |a 10.1021/acs.inorgchem.4c00229
|2 doi
024 7 _ |a 0020-1669
|2 ISSN
024 7 _ |a 1520-510X
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-03327
|2 datacite_doi
024 7 _ |a 38688036
|2 pmid
024 7 _ |a WOS:001227933500001
|2 WOS
037 _ _ |a FZJ-2024-03327
082 _ _ |a 540
100 1 _ |a Banik, Ananya
|0 0000-0003-0455-3051
|b 0
|e Corresponding author
245 _ _ |a Exploring Layered Disorder in Lithium-Ion-Conducting $Li_3Y_{1–x}In_xCl_6$
260 _ _ |a Washington, DC
|c 2024
|b American Chemical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1724055322_8311
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Li3Y1–xInxCl6 undergoes a phase transition from trigonal to monoclinic via an intermediate orthorhombic phase. Although the trigonal yttrium containing the end member phase, Li3YCl6, synthesized by a mechanochemical route, is known to exhibit stacking fault disorder, not much is known about the monoclinic phases of the serial composition Li3Y1–xInxCl6. This work aims to shed light on the influence of the indium substitution on the phase evolution, along with the evolution of stacking fault disorder using X-ray and neutron powder diffraction together with solid-state nuclear magnetic resonance spectroscopy, studying the lithium-ion diffusion. Although Li3Y1–xInxCl6 with x ≤ 0.1 exhibits an ordered trigonal structure like Li3YCl6, a large degree of stacking fault disorder is observed in the monoclinic phases for the x ≥ 0.3 compositions. The stacking fault disorder materializes as a crystallographic intergrowth of faultless domains with staggered layers stacked in a uniform layer stacking, along with faulted domains with randomized staggered layer stacking. This work shows how structurally complex even the “simple” series of solid solutions can be in this class of halide-based lithium-ion conductors, as apparent from difficulties in finding a consistent structural descriptor for the ionic transport.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Samanta, Bibek
|b 1
700 1 _ |a Helm, Bianca
|b 2
700 1 _ |a Kraft, Marvin
|0 P:(DE-Juel1)192207
|b 3
|u fzj
700 1 _ |a Rudel, Yannik
|b 4
700 1 _ |a Li, Cheng
|0 P:(DE-Juel1)172659
|b 5
700 1 _ |a Hansen, Michael Ryan
|0 0000-0001-7114-8051
|b 6
700 1 _ |a Lotsch, Bettina V.
|0 0000-0002-3094-303X
|b 7
700 1 _ |a Bette, Sebastian
|0 0000-0003-3575-0517
|b 8
|e Corresponding author
700 1 _ |a Zeier, Wolfgang G.
|0 P:(DE-Juel1)184735
|b 9
|e Corresponding author
773 _ _ |a 10.1021/acs.inorgchem.4c00229
|g p. acs.inorgchem.4c00229
|0 PERI:(DE-600)1484438-2
|n 19
|p 86988709
|t Inorganic chemistry
|v 63
|y 2024
|x 0020-1669
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1026179/files/revised_Manuscript.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1026179/files/revised_Manuscript.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1026179/files/revised_Manuscript.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1026179/files/revised_Manuscript.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1026179/files/revised_Manuscript.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1026179
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)192207
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)184735
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-25
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-25
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-30
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-30
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INORG CHEM : 2022
|d 2024-12-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-30
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-30
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-30
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21