001026199 001__ 1026199
001026199 005__ 20250204113854.0
001026199 0247_ $$2doi$$a10.1523/ENEURO.0476-23.2024
001026199 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-03334
001026199 0247_ $$2pmid$$a38777610
001026199 0247_ $$2WOS$$aWOS:001248535900001
001026199 037__ $$aFZJ-2024-03334
001026199 082__ $$a610
001026199 1001_ $$0P:(DE-Juel1)180365$$aKöhler, Cristiano$$b0$$eCorresponding author$$ufzj
001026199 245__ $$aFacilitating the Sharing of Electrophysiology Data Analysis Results Through In-Depth Provenance Capture
001026199 260__ $$aWashington, DC$$bSociety for Neuroscience$$c2024
001026199 3367_ $$2DRIVER$$aarticle
001026199 3367_ $$2DataCite$$aOutput Types/Journal article
001026199 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1722320857_20105
001026199 3367_ $$2BibTeX$$aARTICLE
001026199 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001026199 3367_ $$00$$2EndNote$$aJournal Article
001026199 520__ $$aScientific research demands reproducibility and transparency, particularly in data-intensive fields like electrophysiology. Electrophysiology data are typically analyzed using scripts that generate output files, including figures. Handling these results poses several challenges due to the complexity and iterative nature of the analysis process. These stem from the difficulty to discern the analysis steps, parameters, and data flow from the results, making knowledge transfer and findability challenging in collaborative settings. Provenance information tracks data lineage and processes applied to it, and provenance capture during the execution of an analysis script can address those challenges. We present Alpaca (Automated Lightweight Provenance Capture), a tool that captures fine-grained provenance information with minimal user intervention when running data analysis pipelines implemented in Python scripts. Alpaca records inputs, outputs, and function parameters and structures information according to the W3C PROV standard. We demonstrate the tool using a realistic use case involving multichannel local field potential recordings of a neurophysiological experiment, highlighting how the tool makes result details known in a standardized manner in order to address the challenges of the analysis process. Ultimately, using Alpaca will help to represent results according to the FAIR principles, which will improve research reproducibility and facilitate sharing the results of data analyses.
001026199 536__ $$0G:(DE-HGF)POF4-5235$$a5235 - Digitization of Neuroscience and User-Community Building (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001026199 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x1
001026199 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x2
001026199 536__ $$0G:(DE-Juel1)HDS-LEE-20190612$$aHDS LEE - Helmholtz School for Data Science in Life, Earth and Energy (HDS LEE) (HDS-LEE-20190612)$$cHDS-LEE-20190612$$x3
001026199 536__ $$0G:(DE-Juel-1)iBehave-20220812$$aAlgorithms of Adaptive Behavior and their Neuronal Implementation in Health and Disease (iBehave-20220812)$$ciBehave-20220812$$x4
001026199 536__ $$0G:(DE-Juel1)JL SMHB-2021-2027$$aJL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027)$$cJL SMHB-2021-2027$$x5
001026199 536__ $$0G:(DE-HGF)ZT-I-0003$$aHAF - Helmholtz Analytics Framework (ZT-I-0003)$$cZT-I-0003$$x6
001026199 536__ $$0G:(GEPRIS)491111487$$aDFG project 491111487 - Open-Access-Publikationskosten / 2022 - 2024 / Forschungszentrum Jülich (OAPKFZJ) (491111487)$$c491111487$$x7
001026199 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001026199 7001_ $$0P:(DE-HGF)0$$aUlianych, Danylo$$b1
001026199 7001_ $$0P:(DE-Juel1)144168$$aGrün, Sonja$$b2
001026199 7001_ $$0P:(DE-HGF)0$$aDecker, Stefan$$b3
001026199 7001_ $$0P:(DE-Juel1)144807$$aDenker, Michael$$b4
001026199 773__ $$0PERI:(DE-600)2800598-3$$a10.1523/ENEURO.0476-23.2024$$gVol. 11, no. 6, p. ENEURO.0476-23.2024 -$$n6$$pENEURO.0476-23.2024 -$$teNeuro$$v11$$x2373-2822$$y2024
001026199 8564_ $$uhttps://juser.fz-juelich.de/record/1026199/files/eNeuro02930.pdf
001026199 8564_ $$uhttps://juser.fz-juelich.de/record/1026199/files/ENEURO.0476-23.2024.full.pdf$$yOpenAccess
001026199 8564_ $$uhttps://juser.fz-juelich.de/record/1026199/files/eNeuro02930.gif?subformat=icon$$xicon
001026199 8564_ $$uhttps://juser.fz-juelich.de/record/1026199/files/eNeuro02930.jpg?subformat=icon-1440$$xicon-1440
001026199 8564_ $$uhttps://juser.fz-juelich.de/record/1026199/files/eNeuro02930.jpg?subformat=icon-180$$xicon-180
001026199 8564_ $$uhttps://juser.fz-juelich.de/record/1026199/files/eNeuro02930.jpg?subformat=icon-640$$xicon-640
001026199 8564_ $$uhttps://juser.fz-juelich.de/record/1026199/files/ENEURO.0476-23.2024.full.gif?subformat=icon$$xicon$$yOpenAccess
001026199 8564_ $$uhttps://juser.fz-juelich.de/record/1026199/files/ENEURO.0476-23.2024.full.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001026199 8564_ $$uhttps://juser.fz-juelich.de/record/1026199/files/ENEURO.0476-23.2024.full.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001026199 8564_ $$uhttps://juser.fz-juelich.de/record/1026199/files/ENEURO.0476-23.2024.full.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001026199 8767_ $$8eNeuro02930$$92024-04-18$$d2024-05-08$$eAPC$$jZahlung erfolgt$$z$2965
001026199 909CO $$ooai:juser.fz-juelich.de:1026199$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001026199 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180365$$aForschungszentrum Jülich$$b0$$kFZJ
001026199 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)180365$$aRWTH Aachen$$b0$$kRWTH
001026199 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b1$$kFZJ
001026199 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144168$$aForschungszentrum Jülich$$b2$$kFZJ
001026199 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)144168$$aRWTH Aachen$$b2$$kRWTH
001026199 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b3$$kRWTH
001026199 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Fraunhofer Institute for Applied Information Technology (FIT)$$b3
001026199 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144807$$aForschungszentrum Jülich$$b4$$kFZJ
001026199 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5235$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001026199 9141_ $$y2024
001026199 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001026199 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001026199 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-26
001026199 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-10-26
001026199 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001026199 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2017-10-05T09:48:20Z
001026199 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2017-10-05T09:48:20Z
001026199 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-26
001026199 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-10-26
001026199 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001026199 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Double anonymous peer review$$d2017-10-05T09:48:20Z
001026199 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-10-26
001026199 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENEURO : 2022$$d2024-12-18
001026199 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-18
001026199 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-18
001026199 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-18
001026199 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-18
001026199 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-18
001026199 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-18
001026199 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-18
001026199 920__ $$lyes
001026199 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lComputational and Systems Neuroscience$$x0
001026199 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x1
001026199 980__ $$ajournal
001026199 980__ $$aVDB
001026199 980__ $$aUNRESTRICTED
001026199 980__ $$aI:(DE-Juel1)IAS-6-20130828
001026199 980__ $$aI:(DE-Juel1)INM-10-20170113
001026199 980__ $$aAPC
001026199 9801_ $$aAPC
001026199 9801_ $$aFullTexts