001     1026199
005     20250204113854.0
024 7 _ |a 10.1523/ENEURO.0476-23.2024
|2 doi
024 7 _ |a 10.34734/FZJ-2024-03334
|2 datacite_doi
024 7 _ |a 38777610
|2 pmid
024 7 _ |a WOS:001248535900001
|2 WOS
037 _ _ |a FZJ-2024-03334
082 _ _ |a 610
100 1 _ |a Köhler, Cristiano
|0 P:(DE-Juel1)180365
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Facilitating the Sharing of Electrophysiology Data Analysis Results Through In-Depth Provenance Capture
260 _ _ |a Washington, DC
|c 2024
|b Society for Neuroscience
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1722320857_20105
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Scientific research demands reproducibility and transparency, particularly in data-intensive fields like electrophysiology. Electrophysiology data are typically analyzed using scripts that generate output files, including figures. Handling these results poses several challenges due to the complexity and iterative nature of the analysis process. These stem from the difficulty to discern the analysis steps, parameters, and data flow from the results, making knowledge transfer and findability challenging in collaborative settings. Provenance information tracks data lineage and processes applied to it, and provenance capture during the execution of an analysis script can address those challenges. We present Alpaca (Automated Lightweight Provenance Capture), a tool that captures fine-grained provenance information with minimal user intervention when running data analysis pipelines implemented in Python scripts. Alpaca records inputs, outputs, and function parameters and structures information according to the W3C PROV standard. We demonstrate the tool using a realistic use case involving multichannel local field potential recordings of a neurophysiological experiment, highlighting how the tool makes result details known in a standardized manner in order to address the challenges of the analysis process. Ultimately, using Alpaca will help to represent results according to the FAIR principles, which will improve research reproducibility and facilitate sharing the results of data analyses.
536 _ _ |a 5235 - Digitization of Neuroscience and User-Community Building (POF4-523)
|0 G:(DE-HGF)POF4-5235
|c POF4-523
|f POF IV
|x 0
536 _ _ |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)
|0 G:(EU-Grant)945539
|c 945539
|f H2020-SGA-FETFLAG-HBP-2019
|x 1
536 _ _ |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)
|0 G:(EU-Grant)785907
|c 785907
|f H2020-SGA-FETFLAG-HBP-2017
|x 2
536 _ _ |a HDS LEE - Helmholtz School for Data Science in Life, Earth and Energy (HDS LEE) (HDS-LEE-20190612)
|0 G:(DE-Juel1)HDS-LEE-20190612
|c HDS-LEE-20190612
|x 3
536 _ _ |a Algorithms of Adaptive Behavior and their Neuronal Implementation in Health and Disease (iBehave-20220812)
|0 G:(DE-Juel-1)iBehave-20220812
|c iBehave-20220812
|x 4
536 _ _ |a JL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027)
|0 G:(DE-Juel1)JL SMHB-2021-2027
|c JL SMHB-2021-2027
|x 5
536 _ _ |a HAF - Helmholtz Analytics Framework (ZT-I-0003)
|0 G:(DE-HGF)ZT-I-0003
|c ZT-I-0003
|x 6
536 _ _ |a DFG project 491111487 - Open-Access-Publikationskosten / 2022 - 2024 / Forschungszentrum Jülich (OAPKFZJ) (491111487)
|0 G:(GEPRIS)491111487
|c 491111487
|x 7
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Ulianych, Danylo
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Grün, Sonja
|0 P:(DE-Juel1)144168
|b 2
700 1 _ |a Decker, Stefan
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Denker, Michael
|0 P:(DE-Juel1)144807
|b 4
773 _ _ |a 10.1523/ENEURO.0476-23.2024
|g Vol. 11, no. 6, p. ENEURO.0476-23.2024 -
|0 PERI:(DE-600)2800598-3
|n 6
|p ENEURO.0476-23.2024 -
|t eNeuro
|v 11
|y 2024
|x 2373-2822
856 4 _ |u https://juser.fz-juelich.de/record/1026199/files/eNeuro02930.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1026199/files/ENEURO.0476-23.2024.full.pdf
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/1026199/files/eNeuro02930.gif?subformat=icon
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/1026199/files/eNeuro02930.jpg?subformat=icon-1440
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/1026199/files/eNeuro02930.jpg?subformat=icon-180
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/1026199/files/eNeuro02930.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1026199/files/ENEURO.0476-23.2024.full.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1026199/files/ENEURO.0476-23.2024.full.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1026199/files/ENEURO.0476-23.2024.full.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1026199/files/ENEURO.0476-23.2024.full.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1026199
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)180365
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-Juel1)180365
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)144168
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 2
|6 P:(DE-Juel1)144168
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Fraunhofer Institute for Applied Information Technology (FIT)
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)144807
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5235
|x 0
914 1 _ |y 2024
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a DOAJ Journal
|0 PC:(DE-HGF)0003
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-10-26
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2017-10-05T09:48:20Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2017-10-05T09:48:20Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-26
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-10-26
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Double anonymous peer review
|d 2017-10-05T09:48:20Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-10-26
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ENEURO : 2022
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-18
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-18
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Computational and Systems Neuroscience
|x 0
920 1 _ |0 I:(DE-Juel1)INM-10-20170113
|k INM-10
|l Jara-Institut Brain structure-function relationships
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 _ _ |a I:(DE-Juel1)INM-10-20170113
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21