Hauptseite > Publikationsdatenbank > Facilitating the Sharing of Electrophysiology Data Analysis Results Through In-Depth Provenance Capture > print |
001 | 1026199 | ||
005 | 20250204113854.0 | ||
024 | 7 | _ | |a 10.1523/ENEURO.0476-23.2024 |2 doi |
024 | 7 | _ | |a 10.34734/FZJ-2024-03334 |2 datacite_doi |
024 | 7 | _ | |a 38777610 |2 pmid |
024 | 7 | _ | |a WOS:001248535900001 |2 WOS |
037 | _ | _ | |a FZJ-2024-03334 |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Köhler, Cristiano |0 P:(DE-Juel1)180365 |b 0 |e Corresponding author |u fzj |
245 | _ | _ | |a Facilitating the Sharing of Electrophysiology Data Analysis Results Through In-Depth Provenance Capture |
260 | _ | _ | |a Washington, DC |c 2024 |b Society for Neuroscience |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1722320857_20105 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Scientific research demands reproducibility and transparency, particularly in data-intensive fields like electrophysiology. Electrophysiology data are typically analyzed using scripts that generate output files, including figures. Handling these results poses several challenges due to the complexity and iterative nature of the analysis process. These stem from the difficulty to discern the analysis steps, parameters, and data flow from the results, making knowledge transfer and findability challenging in collaborative settings. Provenance information tracks data lineage and processes applied to it, and provenance capture during the execution of an analysis script can address those challenges. We present Alpaca (Automated Lightweight Provenance Capture), a tool that captures fine-grained provenance information with minimal user intervention when running data analysis pipelines implemented in Python scripts. Alpaca records inputs, outputs, and function parameters and structures information according to the W3C PROV standard. We demonstrate the tool using a realistic use case involving multichannel local field potential recordings of a neurophysiological experiment, highlighting how the tool makes result details known in a standardized manner in order to address the challenges of the analysis process. Ultimately, using Alpaca will help to represent results according to the FAIR principles, which will improve research reproducibility and facilitate sharing the results of data analyses. |
536 | _ | _ | |a 5235 - Digitization of Neuroscience and User-Community Building (POF4-523) |0 G:(DE-HGF)POF4-5235 |c POF4-523 |f POF IV |x 0 |
536 | _ | _ | |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539) |0 G:(EU-Grant)945539 |c 945539 |f H2020-SGA-FETFLAG-HBP-2019 |x 1 |
536 | _ | _ | |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907) |0 G:(EU-Grant)785907 |c 785907 |f H2020-SGA-FETFLAG-HBP-2017 |x 2 |
536 | _ | _ | |a HDS LEE - Helmholtz School for Data Science in Life, Earth and Energy (HDS LEE) (HDS-LEE-20190612) |0 G:(DE-Juel1)HDS-LEE-20190612 |c HDS-LEE-20190612 |x 3 |
536 | _ | _ | |a Algorithms of Adaptive Behavior and their Neuronal Implementation in Health and Disease (iBehave-20220812) |0 G:(DE-Juel-1)iBehave-20220812 |c iBehave-20220812 |x 4 |
536 | _ | _ | |a JL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027) |0 G:(DE-Juel1)JL SMHB-2021-2027 |c JL SMHB-2021-2027 |x 5 |
536 | _ | _ | |a HAF - Helmholtz Analytics Framework (ZT-I-0003) |0 G:(DE-HGF)ZT-I-0003 |c ZT-I-0003 |x 6 |
536 | _ | _ | |a DFG project 491111487 - Open-Access-Publikationskosten / 2022 - 2024 / Forschungszentrum Jülich (OAPKFZJ) (491111487) |0 G:(GEPRIS)491111487 |c 491111487 |x 7 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Ulianych, Danylo |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Grün, Sonja |0 P:(DE-Juel1)144168 |b 2 |
700 | 1 | _ | |a Decker, Stefan |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Denker, Michael |0 P:(DE-Juel1)144807 |b 4 |
773 | _ | _ | |a 10.1523/ENEURO.0476-23.2024 |g Vol. 11, no. 6, p. ENEURO.0476-23.2024 - |0 PERI:(DE-600)2800598-3 |n 6 |p ENEURO.0476-23.2024 - |t eNeuro |v 11 |y 2024 |x 2373-2822 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1026199/files/eNeuro02930.pdf |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1026199/files/ENEURO.0476-23.2024.full.pdf |
856 | 4 | _ | |x icon |u https://juser.fz-juelich.de/record/1026199/files/eNeuro02930.gif?subformat=icon |
856 | 4 | _ | |x icon-1440 |u https://juser.fz-juelich.de/record/1026199/files/eNeuro02930.jpg?subformat=icon-1440 |
856 | 4 | _ | |x icon-180 |u https://juser.fz-juelich.de/record/1026199/files/eNeuro02930.jpg?subformat=icon-180 |
856 | 4 | _ | |x icon-640 |u https://juser.fz-juelich.de/record/1026199/files/eNeuro02930.jpg?subformat=icon-640 |
856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/1026199/files/ENEURO.0476-23.2024.full.gif?subformat=icon |
856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/1026199/files/ENEURO.0476-23.2024.full.jpg?subformat=icon-1440 |
856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/1026199/files/ENEURO.0476-23.2024.full.jpg?subformat=icon-180 |
856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/1026199/files/ENEURO.0476-23.2024.full.jpg?subformat=icon-640 |
909 | C | O | |o oai:juser.fz-juelich.de:1026199 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p ec_fundedresources |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)180365 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 0 |6 P:(DE-Juel1)180365 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)144168 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 2 |6 P:(DE-Juel1)144168 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 3 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Fraunhofer Institute for Applied Information Technology (FIT) |0 I:(DE-HGF)0 |b 3 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)144807 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-523 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Neuromorphic Computing and Network Dynamics |9 G:(DE-HGF)POF4-5235 |x 0 |
914 | 1 | _ | |y 2024 |
915 | p | c | |a APC keys set |0 PC:(DE-HGF)0000 |2 APC |
915 | p | c | |a DOAJ Journal |0 PC:(DE-HGF)0003 |2 APC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2023-10-26 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2017-10-05T09:48:20Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2017-10-05T09:48:20Z |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-26 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-10-26 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Double anonymous peer review |d 2017-10-05T09:48:20Z |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-10-26 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ENEURO : 2022 |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-18 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2024-12-18 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-6-20130828 |k IAS-6 |l Computational and Systems Neuroscience |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-10-20170113 |k INM-10 |l Jara-Institut Brain structure-function relationships |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IAS-6-20130828 |
980 | _ | _ | |a I:(DE-Juel1)INM-10-20170113 |
980 | _ | _ | |a APC |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|