
Facilitating the Sharing of
Electrophysiology Data Analysis
Results Through In-Depth
Provenance Capture
Cristiano A. Köhler,1,2 Danylo Ulianych,1 Sonja Grün,1,2 Stefan Decker,3,4

and Michael Denker1

1Institute for Advanced Simulation (IAS-6) and JARA Institute Brain Structure-Function
Relationships (INM-10), Jülich Research Centre, 52428 Jülich, Germany, 2Theoretical Systems
Neurobiology, RWTH Aachen University, 52062 Aachen, Germany, 3Chair of Databases and
Information Systems, RWTH Aachen University, 52074 Aachen, Germany, and 4Fraunhofer
Institute for Applied Information Technology (FIT), 53757 Sankt Augustin, Germany

Abstract

Scientific research demands reproducibility and transparency, particularly in data-intensive fields like
electrophysiology. Electrophysiology data are typically analyzed using scripts that generate output files,
including figures. Handling these results poses several challenges due to the complexity and iterative
nature of the analysis process. These stem from the difficulty to discern the analysis steps, parameters,
and data flow from the results, making knowledge transfer and findability challenging in collaborative
settings. Provenance information tracks data lineage and processes applied to it, and provenance
capture during the execution of an analysis script can address those challenges. We present Alpaca
(Automated Lightweight Provenance Capture), a tool that captures fine-grained provenance information
with minimal user intervention when running data analysis pipelines implemented in Python scripts.
Alpaca records inputs, outputs, and function parameters and structures information according to
the W3C PROV standard. We demonstrate the tool using a realistic use case involving multichannel
local field potential recordings of a neurophysiological experiment, highlighting how the tool makes
result details known in a standardized manner in order to address the challenges of the analysis pro-
cess. Ultimately, using Alpaca will help to represent results according to the FAIR principles, which will
improve research reproducibility and facilitate sharing the results of data analyses.

Significance Statement

Sharing electrophysiology data analysis results is challenging, especially in collaborative environments.
The results can be understood and interpreted only with the accurate description of the individual
analysis steps, the parameters, and the data flow, which can be achieved by storing the results
together with detailed provenance information. We implemented the Alpaca toolbox to capture
provenance during the execution of Python scripts, a typical implementation in pipelines that analyze
electrophysiology datasets. Alpaca provides an easy and lightweight solution to record the relevant
details of the analysis, facilitating sharing the results.

Introduction
Electrophysiology methods are routinely used to investigate brain function, including

the measurement of extracellular potentials using microelectrodes implanted into brain
tissue (Buzsáki et al., 2012; Huang, 2016). The first electrophysiology experiments
acquired potentials from single or few implanted electrodes, which limited the dataContinued on next page.

Received Nov. 11, 2023; revised Feb.
28, 2024; accepted April 13, 2024.

The authors declare no competing
financial interests.

Author Contributions: C.A.K., D.U.,
S.G., S.D., and M.D. designed
research; C.A.K. performed research;
C.A.K. analyzed data; C.A.K., D.U.,
S.G., and M.D. wrote the paper.

We thank Andrew Davison and Richard
Gerkin for helpful discussions during
the implementation of Alpaca. We also
thank Oliver Kloß for testing Alpaca. We
thank Angela Fischer for helping to
construct cartoon images in Figure 1.
Human figures were custom-designed
based on publicly and freely available
images on Unsplash and Pixabay. This
work was performed as part of the
Helmholtz School for Data Science in
Life, Earth and Energy (HDS-LEE) and
received funding from the Helmholtz
Association of German Research
Centres. This project has received
funding from the European Union’s
Horizon 2020 Framework Programme
for Research and Innovation under
Specific Grant Agreement Nos. 785907
(Human Brain Project SGA2) and
945539 (Human Brain Project SGA3),
the Ministry of Culture and Science of
the State of North Rhine-Westphalia,

Research Article: Methods/New Tools
Novel Tools and Methods

June 2024, 11(6). DOI: https://doi.org/10.1523/ENEURO.0476-23.2024. 1 of 31

https://orcid.org/0000-0003-0503-5264
https://orcid.org/0000-0003-3489-0542
https://orcid.org/0000-0003-2829-2220
https://orcid.org/0000-0001-6324-7164
https://orcid.org/0000-0003-1255-7300
https://doi.org/10.1523/ENEURO.0476-23.2024


throughput of the experiments. However, recent technological advances produced large-
density electrode arrays and data acquisition systems able to record hundreds of chan-
nels from heterogeneous sources in the experiment sampled at high resolution (Hong
and Lieber, 2019). It is now possible to perform massive and parallel recordings during
electrophysiology experiments (Buzsáki, 2004) that result in datasets that are both com-
plex in structure and large in volume.
For the analysis of such datasets, this introduces two major consequences. First, the

analysis will often be partially conducted in an exploratory style, where the analysis param-
eters and selection of datasets are probed iteratively by the scientists. Keeping track of
these choices and approaches is particularly challenging for the scientist in the context
of complex data. Second, the analysis of modern datasets often requires advancedmeth-
ods (Brown et al., 2004; Stevenson and Kording, 2011) that are implemented as workflows
composed of several interdependent scripts (Denker and Grün, 2016, for a detailed
description). The highly diverse and distributed results from the parallel and intertwined
processing pipelines operating on complex data must be organized and described in a
manner that is comprehensible not only to the original author of the analysis workflow
but also in a collaborative context. Taken together, the full workflow including iterative
and pipeline approaches, starting from the experimental data acquisition to the presenta-
tion of final results, is subject to a hierarchical decision-making process, frequent
changes, and a large number of processing steps. With growing complexity, these
aspects are increasingly difficult to follow, especially in collaborative contexts, where
results of analyses executed by different scientists are shared.
The resulting lack of reproducibility undermines the scientific investigations and the

public trust in the scientific method and results (cf., Baker, 2016). In collaborative envi-
ronments, the details of an executed analysis workflow should not only be fully docu-
mented but also readily understandable by all partners. Thus, work in collaboration
could be improved further by directly capturing provenance information on a coarser
level of granularity that is informative of the data manipulations throughout the execution
of an analysis workflow leading to a certain analysis result (Ragan et al., 2016; Pimentel
et al., 2019). By using a provenance tracking system during workflow execution, all
operations performed on a given data object can be described and stored in an acces-
sible and structured way that is comprehensible to a human. For the analysis of an elec-
trophysiology dataset, those operations consist of specific analysis methods or
processes, such as applying a bandpass filter, downsampling a specific recorded signal,
or generating a plot. Ultimately, the details relevant for the final interpretation of the
results can be captured and, ideally, stored as metadata with the analysis results.
These may then represent summaries of the analysis flow and lead to a description of
the results that improve findability, interoperability, and reusability of the results (FAIR
principles, Wilkinson et al., 2016).
Several tools to track and record provenance within (analysis) workflows and single

scripts exist, spanning different domains (Ragan et al., 2016; Pimentel et al., 2019). The
tools take different approaches depending on which type of information to capture
(e.g., tracing code execution, capturing user interactions, or monitoring operating system
calls), and the implementation varies according to the intended use of the captured prov-
enance information and its granularity (Bavoil et al., 2005; MacKenzie-Graham et al., 2008;
Köster and Rahmann, 2012; Davison et al., 2014; Murta et al., 2015; Pizzi et al., 2016).
Although some of these solutions might be adapted or even combined to use in the anal-
ysis of electrophysiology data, none of these are designed and optimized with the partic-
ularities of this type of analysis setting in mind. One of these particularities to consider is
the ease of use with custom analysis scripts. A workflow management system (WMS)
such as VisTrails (Bavoil et al., 2005), for instance, requires the construction of workflows
from analysis modules implemented as part of the WMS framework or by writing plugins,
when the user might need the flexibility of custom scripts. Likewise, a tool such as AiiDA
(Pizzi et al., 2016) provides a full workflow ecosystem that requires the development of plu-
gins and wrappers to interface and enforces its own data types, hindering the reuse of
existing code and libraries without considerable effort. A second aspect to consider is
the level of detail and suitability of the provenance information. For individual scripts, tools
like noWorkflow (Murta et al., 2015) produce a provenance trail that is highly detailed and
without semantic meaning, making it difficult for the scientist to extract information. In
contrast, a tool like Sumatra (Davison et al., 2014) will record a more global context in

Germany (NRW-network “iBehave,”
grant number: NW21-049), the Joint
Lab “Supercomputing and Modeling
for the Human Brain,” and by the
Helmholtz Association Initiative and
Networking Fund under project number
ZT-I-0003. Open access publication is
funded by the Deutsche
Forschungsgemeinschaft (DFG,
German Research Foundation)—
491111487.

Correspondence should be addressed
to Cristiano A. Köhler at c.koehler@fz-
juelich.de.

Copyright © 2024 Köhler et al.
This is an open-access article
distributed under the terms of the
Creative Commons Attribution 4.0
International license, which permits
unrestricted use, distribution and
reproduction in any medium provided
that the original work is properly
attributed.

Research Article: Methods/New Tools 2 of 31

June 2024, 11(6). DOI: https://doi.org/10.1523/ENEURO.0476-23.2024. 2 of 31

mailto:c.koehler@fz-juelich.de
mailto:c.koehler@fz-juelich.de
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1523/ENEURO.0476-23.2024


which a script is run in the command line (script parameters, execution environment, version history, and links to the out-
put files), while specific operations inside the script will not be detailed. Solutions to orchestrate a series of scripts, like
Snakemake (Köster and Rahmann, 2012), produce flow graphs that show the flow of execution for the scripts composing
a workflow but lack the actions performed within each script such that more detailed provenance metadata must be man-
ually recorded by the user without any standardization. Finally, a last aspect is the specificity of the tools for a certain
scientific domain. For example, a tool like LONI Pipeline, that supports full workflows with provenance tracking for the
analysis of neuroimaging data (MacKenzie-Graham et al., 2008), could be readily used in some analysis scenarios.
However, the specificity of the available workflow components is a disadvantage for the user that wants to implement
pipelines that fall outside of the scope of the intended use.
This work sets out to address the challenges associated with the analysis of an electrophysiology dataset and sharing

the results. To accomplish this, a novel tool was implemented to capture the suitable scope of provenance information and
store it as metadata together with results generated by analysis scripts implemented in the Python programming
language. A typical analysis scenario is presented as a use case and then the tool is analyzed with respect to the
challenges it aims to address.

Materials and Methods
Challenges for provenance capture during the analysis of electrophysiology data
We argue that a tool to capture provenance information during the analysis of electrophysiology data has to deal with

four scenarios: (i) the analyses often require several preprocessing steps before any analytical method is applied, (ii) the
data analysis process is often not linear but intertwined and therefore exhibits a certain level of intricacy, (iii) parameters of
the analysis are frequently and often iteratively probed, and (iv) the final results are likely to be published or used in shared
environments. In the following, we describe these scenarios in detail and derive four associated challenges for capturing
provenance.
Preprocessing is a typical step in the analysis, and is usually custom-tailored to a particular project (Fig. 1A). For

instance, data from a recording session of multiple trials (e.g., repeated stimulus presentations or behavioral
responses) are usually recorded as a single data stream and only during the analysis cut into the individual trial epochs
relevant to the analysis goal. Due to the high level of heterogeneity in the data, this is frequently achieved using
custom scripts, with parameters that are specific to the trial structure and design of the experiment (e.g., selecting
only particular trials according to behavioral responses such as reaction time). The scientist’s written documentation,
source code, and, in many cases, the data itself would need to be inspected to understand all these steps, e.g., the
chunking of the data that was performed before the core analysis. Therefore, a first challenge is to clearly document
the processing in an accessible and automated manner and to provide this information as supplement to the analysis
output.
The full analysis pipeline from the dataset to a final result artifact is likely not built in one attempt, but instead involves a

continuous development (Fig. 1B). For instance, as new data are obtained, time seriesmay need to be excluded from anal-
ysis and new hypotheses are generated. Therefore, the analysis scripts may be updated to include additional analysis
steps, and the resulting code will have increasing complexity. One solution to organize this agile process is to use a
WMS (Snakemake; Köster and Rahmann, 2012) coupled with a code versioning system such as git. For each run, the
WMS will provide coarse provenance information, such as the name of the script, environment information, script param-
eters, and files that were used or generated. The scripts can then be tracked to specific versions knowing the git commit
history. However, if multiple operations (e.g., cutting data, downsampling, and filtering) are performed inside one script,
the actual parameters in each step are possibly not captured as part of the provenance. This is the case where provenance
information shows only script parameters passed by command line. The mapping of command line to the actual param-
eters used by the functions in the script relies on the correct implementation of the code, and any default parameters for
the function that are not passed by command line will not be known. Furthermore, it is not possible to inspect each inter-
mediate (in-memory) data object during the execution of the script. Yet, without knowledge of these data operations and
the data flow, it becomes challenging to compare results generated by multiple versions of the evolving analysis script, in
particular if the code structure of the script changes over time. A solution to this challenge could be to break such complex
scripts in several smaller scripts, such that the coarse provenance information of the WMS could be more descriptive of
each individual process and intermediate results would be saved to disk (i.e., in our example, separate scripts for cutting,
downsampling, and filtering). However, this may be inconvenient and inefficient: resource-intensive operations (e.g., file
loading and writing) might be repeated across different scripts, and temporary files would have to be used between the
steps, instead of efficiently manipulating data in memory. Moreover, this approach limits the expressiveness and creativity
of defining data operations as opposed to the full set of operations offered by the programming language in a single script.
Therefore, a second challenge is to efficiently capture the parameters and the data flow associated with the analysis steps
of the script.
The parameters that control the final analysis output are frequently probed iteratively (Fig. 1C ). For example, the scientist

performing the analysis could write a Jupyter notebook (Kluyver et al., 2016) to find specific frequency cutoffs for a filtering
step. In one scenario, code cells of the notebook can be run in arbitrary sequences, with some parameters being changed

Research Article: Methods/New Tools 3 of 31

June 2024, 11(6). DOI: https://doi.org/10.1523/ENEURO.0476-23.2024. 3 of 31

https://doi.org/10.1523/ENEURO.0476-23.2024


in the process until a result artifact (e.g., a plot) is saved in a file. In a different scenario, it is possible to generate several
versions of a given file by the same notebook, each of which overwrites the previous version. At this point, the scientist
performing the analysis might rely on the associated Jupyter history or versioning of the notebook/files using git.
However, the relevant parameters that were used to generate results saved in the last version of the file would be difficult

Figure 1. Overview of the four representative scenarios leading to challenges associated with the analysis of an electrophysiology dataset. A, Data fre-
quently require preprocessing before the analytic methods are applied. This step is often customized for each project, resulting in distinct pipelines
that are typically implemented on the level of a script for reasons of efficiency. B, The structure of an analysis script is not static throughout the analysis
process. It can be updated to accommodate new data or hypotheses. This results in multiple versions of scripts with increasingly complex pipelines, which
are associated with distinct versions of the results.C, Relevant parameters for the analyses are often probed iteratively, with the subsequent results chang-
ing in time. Keeping track of the exact parameters used for specific results becomes difficult. D, Use of results in shared environments and publishing
results requires making available the details of the analysis process to all collaborators. Finding specific results in a shared repository of results from dif-
ferent collaboration partners is difficult, as relevant parameters may be stored in a non-machine-readable format inside the result file, or cryptically in file
names.

Research Article: Methods/New Tools 4 of 31

June 2024, 11(6). DOI: https://doi.org/10.1523/ENEURO.0476-23.2024. 4 of 31

https://doi.org/10.1523/ENEURO.0476-23.2024


to recall. Ultimately, a detailed documentation by the user or retracing the source code according to an execution history is
still required. Therefore, a third challenge is to retain a documentation of the iterative generation of the analysis result that is
explicitly and unambiguously linked to the generated result file.
The fourth challenge stems from the situation where results (e.g., plots) are likely to be published or used in collaborative

environments (Fig. 1D). This includes files uploaded in a manuscript submission, or files deposited in a shared folder or
sent between collaborators via email. The interpretation of the stored results depends on the understanding of the analysis
details and its relevant parameters by the collaboration partner. Moreover, searching for specific results in a large collec-
tion of shared files can be difficult: not all the relevant parameters are recorded in the file name, and are likely stored as
non-machine-readable information within the file (e.g., an axis label in a figure). In these situations, analysis provenance
stored together with the shared result files as structured and comprehensible metadata should improve information trans-
fer in the collaboration and findability of the results.

Use case scenario
As a use case scenario, we consider an analysis that computed the mean power spectral densities (PSDs) from a pub-

licly available dataset containing massively parallel electrophysiological recordings (raw electrode signals, local field
potentials, and spiking activity) in the motor cortex of monkeys in a behavioral task involving movement planning and exe-
cution. The experiment details, data acquisition setup, and resulting datasets were previously described (Brochier et al.,
2018). Briefly, two subjects (monkey N and monkey L) were implanted with one Utah electrode array (96 active electrodes)
in the primary motor/premotor cortices. Subjects were trained in an instructed delayed reach-to-grasp task. In a trial, the
monkey had to grasp a cubic object using either a side grip (SG) or a precision grip (PG). The SG consists of the subject
grasping the object with the tip of the thumb and the lateral surface of the other fingers, on the lateral sides of the object.
The PG consists of the subject placing the tips of the thumb and index finger on a groove on the upper and lower sides of
the object. The monkey had to pull the object against a load that required either a low (LF) or high pulling force (HF). The
grip and force instructions were presented through a light-emitting diode (LED) panel using two different visual cue signals
(CUE and GO), respectively, which were separated by a 1,000ms delay (Fig. 2A). As a result of the combination of the grip
and force conditions, four trial types were possible: side grip with low force (SGLF), side grip with high force (SGHF), pre-
cision grip with low force (PGLF), and precision grip with high force (PGHF). A recording session consisted of several rep-
etitions of each trial type that were acquired continuously in a single recording file. Neural activity was recorded during the
session using a Blackrock Microsystems Cerebus data acquisition system, with the raw electrode signals bandpass-
filtered between 0.3 and 7,500Hz at the headstage level and digitized at 30 kHz with 16-bit resolution (0.25 V/bit, raw sig-
nal). The behavioral events were simultaneously acquired through the digital input port that stored 8-bit binary codes as
received from the behavioral apparatus controller.
The experimental datasets are provided in the Neuroscience Information Exchange (NIX) format (RRID:SCR_016196;

https://nixio.readthedocs.io), developed with the aim to provide standardized methods and models for storing neurosci-
ence data together with their metadata (Stoewer et al., 2014). Inside theNIX file, data are represented according to the data
model provided by the Neo (RRID:SCR_000634; https://neuralensemble.org/neo) Python library (Garcia et al., 2014). Neo
provides several features to work with electrophysiology data. First, it allows loading data files written using open stan-
dards such as NIX as well as proprietary formats produced by specific recording systems (e.g., Blackrock
Microsystems, Plexon, Neuralynx, among others). Second, it implements a data model to load and structure information
generated by the electrophysiology experiment in a standardized representation. This includes time series of data
acquired continuously in samples (such as the signals from electrodes or analog outputs of a behavioral apparatus) or
timestamps (such as spikes in an electrode or digital events produced by a behavioral apparatus). Third, Neo provides
typical manipulations and transformations of the data, such as downsampling the signal from electrodes or extracting
parts of the data at specific recording intervals. The objectsmay store relevantmetadata, such as names of signal sources,
channel labels, or details on the experimental protocol. In this use case scenario, Neo was used to load the datasets and
manipulate the data during the analysis.
The relevant parts of the structure and relationships between objects of the Neo data model are briefly represented in

Figure 2B. The Neo library is based on two types of objects: data and containers. Different classes of data objects exist,
depending on the specific information to be stored. Data objects are derived fromQuantity arrays that are provided by the
Python quantities package (https://github.com/python-quantities/python-quantities) and provide NumPy arrays with
attached physical units. The AnalogSignal is used to store one or more continuous signals (i.e., time series) sampled at
a fixed rate, such as the 30 kHz raw signal captured from each of the 96 electrodes in the Utah array. The Event object
is used to store one or multiple labeled timestamps, such as the behavioral events throughout the trials acquired from
the digital port of the recording system. The container objects are used to group data objects together, and these are
accessed through specific collections (lists) present in the container. The top-level container is theBlock object that stores
general descriptions of the data and has one ormoreSegment objects accessible by the segments attribute. TheSegment
object groups data objects that share a common time axis (i.e., they start and end within the same recording time, defined
by the t_start and t_stop attributes; Fig. 2C ). The Segment object also has collections to store specific data objects: ana-
logsignals is a list of the AnalogSignal data objects, and events is a list of the Event data objects.

Research Article: Methods/New Tools 5 of 31

June 2024, 11(6). DOI: https://doi.org/10.1523/ENEURO.0476-23.2024. 5 of 31

https://nixio.readthedocs.io
https://nixio.readthedocs.io
https://neuralensemble.org/neo
https://neuralensemble.org/neo
https://github.com/python-quantities/python-quantities
https://github.com/python-quantities/python-quantities
https://doi.org/10.1523/ENEURO.0476-23.2024


The Neo data model also defines a framework for metadata description as key-value pairs for its data and container
objects through annotations and array annotations. Annotations may be added to any Neo object. They contain informa-
tion that are applicable to the complete object, such as the hardware filter settings that apply to all channels contained in
an AnalogSignal object. Array annotations may be added to Neo data objects only. They contain information stored in
arrays, whose length corresponds to the number of elements in the data. They are used to provide metadata for a partic-
ular element in the data stored in the object. For instance, in the Event object representing the behavioral events in the

Figure 2. Overview of the delayed reach-to-grasp task and Neo data model. The datasets from the experiment were used for use case scenario for cap-
turing provenance during the analysis of electrophysiology data, andNeowas used to load andmanipulate the data in the analysis script. A, Description of
the experimental protocol (cf. Brochier et al., 2018 for details). The monkey is instructed to grasp an object using either a SG or PG, and this is identified as
the CUE-ON event. After a 1 s delay, a GO signal (GO-ON event) marks the start of themovement and indicateswhether to pull the object with either low (LF)
or high (HF) force. Several behavioral events occur during a trial (marked on the time line). B, Overview of the Neo data model defining container objects
(shown here: Block and Segment) and data objects (shown here: AnalogSignal and Event). Supporting metadata are stored as annotations and array_an-
notations dictionaries (gray shading). Annotations are single values associated with a key (e.g., subject_name). Array annotations are stored in arrays with
the length of the data (e.g., number of events in Event or number of channels in AnalogSignal). Segment objects group data objects in specific windows of
time (given by attributes t_start and t_stop). Event objects are arrays with timestamps of labeled events. AnalogSignal objects are two-dimensional arrays
(first dimension: time, second dimension: channels) where the time axis is determined by the t_start and sampling_rate attributes. The units attribute iden-
tifies the physical unit associated with the data array (e.g., microvolts for AnalogSignal and seconds for Event). C, Time-homogeneous representation of
two data elements of the dataset (AnalogSignal and Event) stored inside a Segment container. Selected timestamps and corresponding values of the array
annotation trial_event_labels of the Event object are presented in blue. Image in panel A is adapted from Brochier et al. (2018), licensed under the Creative
Commons Attribution 4.0 International License.

Research Article: Methods/New Tools 6 of 31

June 2024, 11(6). DOI: https://doi.org/10.1523/ENEURO.0476-23.2024. 6 of 31

https://doi.org/10.1523/ENEURO.0476-23.2024


reach-to-grasp task, the trial_event_labels array annotation stores the decoded event string associated with each event
timestamp stored in the object (Fig. 2C ). In the end, all the data in the NIX dataset are loaded into Neo data objects that
encapsulate all the relevant metadata.
In the use case scenario, the PSDs were analyzed for each subject (monkey N and monkey L), and the mean PSD

was computed for each of the four trial types present in the experiment (Fig. 3). Although a single Python script
(named psd_by_trial_type.py) was used to produce the plot (stored as R2G_PSD_all_subjects.png), the actual analysis
algorithm is complex (shown in a schematic form in Fig. 4). In a typical scenario, a file such as
R2G_PSD_all_subjects.png could be stored in a shared folder or even sent to collaborators by e-mail. At this point,
several key information cannot be obtained from the plot alone: (i) How were the trials defined, i.e., which time points
or behavioral events were used as start and end points to cut the data in the data preprocessing? (ii) Was any filtering
applied to the raw signal, before the computation of the PSD? (iii) Several methods are available to obtain the PSD
estimate, each with particular features that may affect the estimation of the spectrum (Welch, 1967; Percival and
Walden, 1993). Which method was used in this analysis, and what were the relevant parameters (e.g., for frequency
resolution)? (iv) How was the aggregation performed (i.e., method and number of trials). What do the shaded area inter-
vals around the plot lines represent? In addition to these questions, the contents of a plot such as
R2G_PSD_all_subjects.png may be the result of several iterations of exploratory analyses and development of
psd_by_trial_type.py. In our scenario, parameters that could have been iteratively probed or improved could be the
identification of failed electrodes, definition of a suitable time window for cutting the data from a full trial, or to select
specific filter cutoffs. Therefore, R2G_PSD_all_subjects.png could be overwritten after psd_by_trial_type.py was run
with different parameters or different versions of the code. Altogether, the exhaustive set of steps and definitions
used for the generation of the analysis result is not apparent from R2G_PSD_all_subjects.png. Even with a good
description such as the flowchart in Figure 4, which could be added as accompanying documentation, the exact
parameters used for function calls are still missing, especially if these were determined during run time (such as the
number of trials in the dataset).
The only way of getting those relevant details of the analysis is by directly inspecting psd_by_trial_type.py. The difficul-

ties associated with this approach are illustrated in Figure 5. For a simple code snippet (Fig. 5A), which iterates over a list of
trial data to apply a Butterworth filter and then downsample the signal, it is not possible to visualize the state of the data for
each iteration (e.g., the array shape). In addition, the actual contents of the variables are unknown. A robust datamodel like
Neo helps to understand which objects were accessed during each iteration. However, even when using that framework,
the exact data objects and their transformations in each iteration of the for-loop are not apparent from the code given that
the object instances (including attributes, such as the shape of an array) are only available during run time. One example of
such information that exists only at run time is the number of trials (i.e., the number of Segment objects returned by cut_-
segment_by_epoch) and the number of channels (i.e., the shape of the AnalogSignal object in each loop iteration). Unless
running the script again with the same dataset and explicitly outputting this information, it is not possible to know. In con-
trast, by capturing and structuring the relevant provenance during the execution, a representation could be obtained in a
way that all relevant information is accessible after the run (Fig. 5B). The detailed trace ultimately shows which part of the
data and the resulting intermediate objects were used during each iteration.

Figure 3. Output of the analysis workflow implemented in the script psd_by_trial_type.py in the context of the use case scenario. This plot was stored as a
Portable Network Graphics (PNG) file named R2G_PSD_all_subjects.png.

Research Article: Methods/New Tools 7 of 31

June 2024, 11(6). DOI: https://doi.org/10.1523/ENEURO.0476-23.2024. 7 of 31

https://doi.org/10.1523/ENEURO.0476-23.2024


Figure 4. Flowchart of the analysis implemented as use case scenario. The code for this algorithm is implemented in psd_by_trial_type.py. The main steps
are composed by three nested loops (purple hexagons): for each input file, a second loop runs over the four possible trial types, extracting the data of the
individual trial epochs. After that, for each trial, the channel-wise power spectral densities (PSDs) are computed and the power density estimates from all
channels are subsequently aggregated. At the end of each trial type loop, the single-trial PSDs are aggregated and plotted. After the last input file is pro-
cessed, the plot is saved to R2G_PSD_all_subjects.png.

Research Article: Methods/New Tools 8 of 31

June 2024, 11(6). DOI: https://doi.org/10.1523/ENEURO.0476-23.2024. 8 of 31

https://doi.org/10.1523/ENEURO.0476-23.2024


Figure 5.Provenance helps to understand exact data processing during code execution.A, Snippet of code inPython that iterates over a list with individual
trial data to perform a low-pass filter operation using a Butterworth filter followed by downsampling the signal by a factor of 60. In this example, the code
uses data objects defined by theNeo framework (Garcia et al., 2014). The list trial_segments stores severalSegment objects. The raw neural signal from the
electrode array is stored in AnalogSignal objects. Note that although knowing the hierarchical structure ofNeo helps to understand the implemented code,
the actual data objects and any associated information cannot be accessed, as these exist only during run time. B, Example of a provenance trace to rep-
resent the execution of the code inA. Data objects are represented as ellipses, and functions as rectangles. Two exemplary iterations of the loop are shown
as two separate paths in a graph (highlighted by blue or red color shades, respectively). Dashed lines represent accessing a data object contained into
another data object using a specific Python operation (e.g., subscript or attribute). Note that the Segment object stored in the variable trial is known for
every single iteration, and its transformations are followed individually. The information associated with each data object (e.g., start and end time of
Segment, or the shapes of the AnalogSignal objects) can be inspected at every stage of the iteration (dashed red rectangles on the right show information
for the second loop iteration). Parameters of the functions called, even if they were not explicitly written in the code, but determined during run time, can
also be inspected (solid line red rectangles on the right show parameters for each function called in the second iteration).

Research Article: Methods/New Tools 9 of 31

June 2024, 11(6). DOI: https://doi.org/10.1523/ENEURO.0476-23.2024. 9 of 31

https://doi.org/10.1523/ENEURO.0476-23.2024


Alpaca: a tool for automatic and lightweight provenance capture in Python scripts
As the analysis of electrophysiology datasets is usually based on scripts such as psd_by_trial_type.py, we set to imple-

ment Alpaca (Automated Lightweight ProvenAnceCApture) as a tool to capture the provenance information that describes
the main steps implemented in scripts that process data. The captured information can be stored as a metadata file that is
associated with the result file(s) generated by the script (e.g., the plot in Fig. 3 stored in R2G_PSD_all_subjects.png).
Alpaca can be used for scripts written in the Python programming language as Python is free and open source, and
has been gaining popularity among the neuroscience community (Muller et al., 2015). Python is also frequently used in
the analysis of electrophysiology data, and several dedicated open source packages are available, such as the Neo
andNWB (Neurodata without borders; RRID:SCR_015242; https://www.nwb.org) (Rübel et al., 2022) frameworks for elec-
trophysiology data representation, the unified spike sorting pipeline SpikeInterface (RRID:SCR_021150; https://
spikeinterface.readthedocs.io) (Buccino et al., 2020), and Elephant (Electrophysiology Analysis Toolkit; RRID:RRID:
SCR_003833; https://python-elephant.org) (Denker et al., 2018) for data analysis. Therefore, a tool implemented in
Pythonwill have greater impact in the neuroscience community, as no licenses or fees are required and it builds on already
established state-of-the-art processing and analysis tools.
The functionality of Alpaca is illustrated in Figure 6. Alpaca is based on a Python function decorator (a Python decorator

allows adding new functionality to existing functions without changing their behavior) that supports tracking the individual
steps of the analysis and constructing a provenance trace. In addition, Alpaca serializes the captured provenance infor-
mation (Fig. 6A) as a metadata file encoded in the RDF format (Resource Description Framework, a general model for
description and exchange of graph data; Adida et al., 2015) according to the data model defined in the W3C (World
Wide Web Consortium; https://www.w3.org) PROV standard (PROV-DM; Belhajjame et al., 2013). PROV is an open stan-
dard that was developed to allow the interoperability of provenance information in heterogeneous environments (Groth
and Moreau, 2013). Finally, visualization of the provenance trace is supported by converting the PROV metadata into
graphs that show the data flow within the script and allow the visual inspection of the captured provenance (Fig. 6B).
Alpaca is provided as a standalone open source Python package that can be installed from the Python Package Index
or directly from the code repository (https://github.com/INM-6/alpaca). The documentation with usage examples is avail-
able online (https://alpaca-prov.readthedocs.io).

Figure 6. Schematic overview of the functionality of Alpaca. A, The decorator and functions provided by Alpaca are incorporated into a Python script that
processes data (orange rectangle). The script reads an input file and generates another file as result output. Alpaca tracks the functions called during the
execution of the script (represented by the light blue rectangles inside the orange rectangle) together with the input and output data objects (represented by
the brown ellipses within the orange rectangle). Function parameters andmetadata of data objects are also captured. The aggregated information is struc-
tured according to the W3C PROV standard and serialized to a file (dark blue) using Resource description framework (RDF) acting as a sidecar file to the
output file of the script. B, To visualize the captured provenance, the serialized RDF files can be converted into NetworkX graph objects using Alpaca. The
graph can be adjusted to concentrate on specific information of the captured provenance, or simplified. Finally, the graph can be saved using graph serial-
ization formats (e.g., Graph exchange XML format; GEXF) supported by third-party graph visualization software (e.g., Gephi).

Research Article: Methods/New Tools 10 of 31

June 2024, 11(6). DOI: https://doi.org/10.1523/ENEURO.0476-23.2024. 10 of 31

https://www.nwb.org
https://www.nwb.org
https://spikeinterface.readthedocs.io
https://spikeinterface.readthedocs.io
https://spikeinterface.readthedocs.io
https://python-elephant.org
https://python-elephant.org
https://www.w3.org
https://www.w3.org
https://github.com/INM-6/alpaca
https://github.com/INM-6/alpaca
https://alpaca-prov.readthedocs.io
https://alpaca-prov.readthedocs.io
https://doi.org/10.1523/ENEURO.0476-23.2024


Several design decisions were adopted in Alpaca. First, the tool captures provenance during the execution without the
need for users to enhance this information with additional metadata or documentation. Second, code instrumentation is
reduced to a minimum level, and users are asked to make only minor changes in the existing code to enable tracking (see
the online document contained within the code repository accompanying this study (https://github.com/INM-6/alpaca_
use_case/blob/f1696ec8dceaadbed6b825636ca7eb9aee704c92/documents/code_changes.pdf) showing the changes
required to track provenance within psd_by_trial_type.py). Third, it is flexible enough to accommodate different coding
styles, and it was designed to be the most compatible with existing code bases. Therefore, provenance is captured in
an automatized and lightweight fashion.
Alpaca assumes that an analysis script such as psd_by_trial_type.py is composed of several functions that are called

sequentially (potentially in the context of control flow statements such as loops), each performing a step in the analysis.
The functions in the script may take data as input and produce outputs based on a transformation of that data, or generate
new data. Moreover, a function may have one or more parameters that are not data inputs but modify the behavior on how
the function is generating the output. For example, in reshaping an array using theNumPy function reshape, the new shape
would represent a parameter that defines how to reshape the original array (i.e., input data) into a new array (i.e., the output
data). In Python, information to a function is passed through function arguments that are accessed by the local code in the
function body that performs the computation. Those are specified in the function declaration using the def keyword.
Therefore, Alpaca utilizes the following definitions to analyze a function call in the script:

• Input: a file or Python object that provides data for the function. It is one of the function arguments;
• Output: a file or Python object generated by a function. Can be a return value of the function or one of the function

arguments;
• Parameter: any other function argument that is neither an input nor an output;
• Metadata: additional information contained in the input/output. ForPython objects, these can be accessible by attri-

butes (i.e., accessed by the dot . after the object name, such as signal.shape) or annotations stored in dictionaries
accessed by special attributes, such as the ones defined in the Neo data model. For files, this is the file path.

Initializing Alpaca. The calls to the functions tracked by Alpaca are expected to be present in a single scope (i.e., the
main script body or a single function such as main). To identify the code to be tracked and start the capture, the user
must insert a call to the activate function at a point in the script before the corresponding block of code. When calling
activate, Alpaca identifies the current script in execution, obtains the SHA256 hash (a hash is a function that maps
data with variable size to fixed-size values. SHA256 is a Secure Hash Algorithm (SHA) that can be used to verify the identity
of files) of the source file storing the code, and generates a universally unique identifier (UUID) to identify the script exe-
cution (session ID). The source code to be tracked will be analyzed to allow the extraction of each individual code state-
ment later, during the analysis of each function execution.
Before activating the tracking, the user can set options using the alpaca_settings function. These settings operate

globally within the toolbox and control how Alpaca captures and describes provenance.

Tracking the steps of the analysis. The Provenance function decorator is used to wrap each data processing function
executed in the script (Fig. 7). When applying the decorator, the argument names that are either Python object inputs, file
inputs, or file outputs are identified through the decorator constructor parameters inputs, file_input, or file_output. When
the script is run, for each execution of the function, the decorator: (i) generates a description of the inputs and outputs, (ii)
records the parameters used in the call, (iii) generates a unique execution UUID (execution ID), and (iv) captures the start/
end timestamps. Finally, this information is used to build a record for the function execution. Provenance has an internal
global function execution counter, incremented after the execution of any function being tracked. The current value is also
added to the function execution record to obtain the order of that execution. Finally, all the execution records are stored in
an internal history, which will be used to serialize the information at the end.
The Provenance decorator analyzes the inputs and outputs to extract the information relevant for their description and

their metadata:

• for Python objects (e.g., an AnalogSignal object), the type information (Python class name and themodule where
it is implemented), content hash, and current memory address are recorded. The content hash is computed
using either the hash function from the joblib (https://joblib.readthedocs.io) package (using the SHA1 algorithm)
or the builtin Python hash function (that uses the algorithm implemented in the __hash__ method of the object).
By default, every object will be hashed using joblib. However, it is possible to define specific packages whose
objects will be hashed using the builtin hash function using the alpaca_settings function. This allows selecting
hashing functionality that may already be implemented in the object (which can be faster), or avoid sensitivity to
minor changes to the object content that will produce a provenance trace that is too detailed. The values of all
object instance attributes (i.e., stored in the __dict__ dictionary) are recorded, together with the values of the
specific attributes when present. This includes, for example, shape and dtype for NumPy arrays, or extended
attributes such as units, t_start, t_stop, nix_name, and dimensionality for the AnalogSignal object of Neo

Research Article: Methods/New Tools 11 of 31

June 2024, 11(6). DOI: https://doi.org/10.1523/ENEURO.0476-23.2024. 11 of 31

https://github.com/INM-6/alpaca_use_case/blob/f1696ec8dceaadbed6b825636ca7eb9aee704c92/documents/code_changes.pdf
https://github.com/INM-6/alpaca_use_case/blob/f1696ec8dceaadbed6b825636ca7eb9aee704c92/documents/code_changes.pdf
https://github.com/INM-6/alpaca_use_case/blob/f1696ec8dceaadbed6b825636ca7eb9aee704c92/documents/code_changes.pdf
https://joblib.readthedocs.io
https://joblib.readthedocs.io
https://doi.org/10.1523/ENEURO.0476-23.2024


representing a measurement time series. More generic attributes that could be used by other data models, such
as id, pid, or create_time, are also captured if present. Currently, the support to capture extended metadata
details is implemented for NumPy-based objects;

• for files, the SHA256 file hash is computed using the hashlib package, and the absolute file path is recorded;
• for the Python builtin None, the object hash is an UUID, as it is a special case where the actual object is shared

throughout the execution environment. This avoids duplication.

The information on the function is also extracted: name, module, and version of the package where it was implemented (if
available through themetadatamodule from the importlib package implemented in Python 3.8 or higher). Version informa-
tion is currently not recorded for user-defined functions (i.e., implemented in the script file being tracked).
Finally, the inputs to a function may be accessed from container objects by subscripts (e.g., an item in a list such as

signals[0]) or attributes (e.g., segment.analogsignals). To capture these static relationships, the abstract syntax tree of
the source code statement containing the current function call is analyzed, all container objects are identified, and the
operations (subscript or attribute) are added to the execution history. In the end, the container memberships are identified
and recorded if used when passing inputs to a function.

Serialization of the provenance information. The captured provenance is serialized as RDF graph (Adida et al., 2015),
using one of the formats supported by RDFLib (https://github.com/RDFLib/rdflib). The AlpacaProvDocument class is
responsible for managing the serialization, based on the history captured by the Provenance decorator. For simplified
usage, the serialization can be accomplished in a single step by just calling the save_provenance function at the end
of the script execution, passing a destination file and serialization format. All the information currently stored in the history
in Provenance will be saved to the disk.
For the RDF representation of the captured provenance, the PROV-O ontology (Lebo et al., 2013) was extended to incor-

porate properties relevant to the description of the provenance elements captured by Alpaca. Figure 8A shows the main
classes derived from the SoftwareAgent (a subclass of Agent), Entity, and Activity classes of the PROV-O ontology, and
Figure 8B shows the provenance relationships among the classes, as defined in PROV-O. These main classes are:

• DataObjectEntity: entity used to represent a Python object that was an input or output of a function;
• FileEntity: entity used to represent a file that was an input or output of a function;

Figure 7. Alpaca captures fine-grained provenance information at each step during the execution of Python scripts that process data. The Provenance
decorator is used to wrap each function called in the script. The input and output data objects for each function are identified, and any embedded object
metadata is captured (bottom right and left). Object metadata are attributes of the objects or special values stored in annotation dictionaries. This takes
advantage of available data models for electrophysiology where experimental details can be stored together with the data as annotations (e.g.,Neo). In the
example provided in this paper, the object metadata are attributes such as shape and units, together with annotations such as channel names in an
AnalogSignal with the data recorded from the electrodes. Finally, the parameters of the functions are also identified (bottom middle). In this example,
this is the type of window or the number of segments used in the computation of the PSD using the welch_psd function that implements the Welch algo-
rithm. In the end, a full provenance graphwith the lineage from the input files (such as the twoNeuroscience Information Exchange (NIX) files in the example)
to the output file with the analysis result (such as R2G_PSD_all_subjects.png) is produced.

Research Article: Methods/New Tools 12 of 31

June 2024, 11(6). DOI: https://doi.org/10.1523/ENEURO.0476-23.2024. 12 of 31

https://github.com/RDFLib/rdflib
https://github.com/RDFLib/rdflib
https://doi.org/10.1523/ENEURO.0476-23.2024


• FunctionExecution: activity used to represent a single execution of one function with a set of parameters;
• ScriptAgent: agent used to represent the script that was run and executed several functions in sequence.

In addition to the classes derived from PROV-O, two additional classes are defined in the Alpaca ontology. They are
used to represent specific information in the context of the provenance captured by Alpaca:

• Function: represents a Python function. It contains code that is executed to perform some action in the script, and
that can take inputs, parameters, and produce outputs (e.g., in our example, the welch_psd function defined in the
spectral module of the Elephant package);

• NameValuePair: represents information where a value is associated with a name. Name is a string and value can be
any literal (e.g., integers, strings, decimal numbers). This is the main class used to store function parameters and
data object metadata.

The Alpaca ontology also defines specific extended properties which are used to serialize function parameters, object/file
metadata, and function information. They are summarized in Table 1.

Figure 8. The Alpaca ontology used to serialize provenance information. A, Main classes (bottom, filled shapes) derived from PROV-O (top, unfilled
shapes). Objects storing data and files are represented as PROV-O Entities. The execution of a function is a PROV-O Activity. The script is a PROV-O
SoftwareAgent (which in turn is derived from the PROV-O Agent class). B, PROV-O provenance relationships among the classes in the Alpaca ontology.

Research Article: Methods/New Tools 13 of 31

June 2024, 11(6). DOI: https://doi.org/10.1523/ENEURO.0476-23.2024. 13 of 31

https://doi.org/10.1523/ENEURO.0476-23.2024


For representing memberships, such as objects accessed from attributes (e.g., segment.analogsignals), indexes (e.g.,
signals[0]), or slices (e.g., signals[1:5]), the PROV-O hasMember property is used. The DataObjectEntity representing the
container object will have a hasMember property whose value is the DataObjectEntity representing the element
accessed. The element will have one of the following properties to describe the membership:

• fromAttribute: a string storing the name of the attribute used to access the object in the container (e.g., analog-
signals in segment.analogsignals);

• containerIndex: a string storing the index used to access the object in the container (e.g., 0 in signals[0]). This is not
necessarily a number, as Python uses string indexes when accessing elements in dictionaries;

• containerSlice: a string storing the slice used to access the object (e.g., 1:5 in signals[1:5]).

In the RDF graph, each data object, file, or function execution is identified by a uniform resource name (URN) identifier
(Saint-Andre and Klensin, 2017). The functions and script are also represented by their own URNs. To compose a unique
identifier, specific information captured during the script execution is used in the composition of the final URN string. The
authority identifier element is a string that points to the institute or organization which has responsibility over the analysis. It
can be set using the alpaca_settings function. The identifiers generated by Alpaca are summarized in Table 2.
Figure 9 summarizes how a single function execution is stored in the serialized RDF graph using the Alpaca ontology and

the PROV-O properties.

Visualization of the serialized provenance. The provenance records serialized to RDF files can be loaded as NetworkX
(RRID:SCR_016864; https://networkx.org) (Hagberg et al., 2008) graph objects. Besides the functionality for graph anal-
ysis offered by NetworkX, the graph objects can be saved as GEXF (Graph exchange XML format; https://gexf.net) or

Table 1. Properties of the classes defined by the Alpaca ontology

Class Property Description Value

DataObjectEntity hasAnnotation The value of an annotation present in the object. Annotations are stored in
dictionaries accessible by either the annotations or array_annotations object
attributes. The annotation name is the dictionary key, and the annotation
value is the corresponding value. The support for annotations is currently
supported for Neo. However, the functionality for complex data types is
implemented as a plugin system to support for data objects from additional
frameworks, such as NWB or Pandas.

NameValuePair

hasAttribute The value of an attribute of the object (i.e., accessible by the dot such as
signal.shape)

NameValuePair

hashSource One of the three methods used to obtain the object hash: joblib_SHA1,
Python_hash, or UUID

xsd:string

FileEntity filePath The absolute path where the file is located in the system xsd:string

FunctionExecution hasParameter A parameter passed to the function when called NameValuePair

executionOrder Value of the global execution counter when the function was executed xsd:int

codeStatement Statement in the source code that originated the call to the function xsd:string

usedFunction Function that was called Function

ScriptAgent scriptPath Absolute path to the file containing the source code of the script being
executed

xsd:string

Function functionVersion Version of the package where the function is implemented. If function
information is not available, it will be NA.

xsd:string

functionName The name of the function, as written in the def statement of thePython function
definition

xsd:string

implementedIn The full path to themodule where the function is implemented (example: for the
rand function defined in the random module of the NumPy package, the
value of the property will be numpy.random)

xsd:string

NameValuePair pairName Name that identifies the value xsd:string

pairValue Value that is associated with the name rdfs:Literal

The prefix xsd: identifies the namespace of the Extensible Markup Language (XML) Schema and rdfs: the namespace of the RDF Schema. Values without a
namespace indicated by a prefix are classes defined in the Alpaca ontology.

Research Article: Methods/New Tools 14 of 31

June 2024, 11(6). DOI: https://doi.org/10.1523/ENEURO.0476-23.2024. 14 of 31

https://networkx.org
https://networkx.org
https://gexf.net
https://gexf.net
https://doi.org/10.1523/ENEURO.0476-23.2024


GraphML (http://graphml.graphdrawing.org) files that can be visualized by available graph visualization tools, e.g., Gephi
(RRID:SCR_004293; https://gephi.org) (Bastian et al., 2009), or other Python-based frameworks, e.g., Pyvis (https://pyvis.
readthedocs.io) (Perrone et al., 2020). This takes the advantage of existing free and open source solutions developed spe-
cifically for analyzing and interacting with graphs.
In Alpaca, the ProvenanceGraph class is responsible for generating the NetworkX graph objects from serialized

provenance data. Figure 10 summarizes how the visualization graph is obtained from the RDF graph. The resulting
graph will have entities (DataObjectEntity or FileEntity) and activities (FunctionExecution) as nodes, identified by
the respective URN. Directed edges show the data flow across the functions. Metadata and function parameters
are added to the attributes dictionary of each node. A few attributes are present for all the nodes in the graph (omitted
in Fig. 10 for clarity):

• type: describes one of the three possible types of node: object, file, or function;
• label: for data objects, it is the Python class name (e.g., AnalogSignal). For functions, it is the function name (e.g.,

welch_psd). For files, it is File;
• Python_name: for data objects and functions, it is the full module path to the class or function, with respect

to the package where it is implemented (e.g., neo.core.analogsignal.AnalogSignal). For files, this attribute is not
used;

• Time Interval: a string representing a time interval according to the standard used byGephi that is composed from
the order of the function execution. This information can be used to visualize the temporal evolution of the prove-
nance graph, e.g., using the timeline feature of Gephi that displays only the nodes within a specified execution
interval.

The ProvenanceGraph class provides options to tweak the visualization. First, it is possible to select which attri-
butes and annotations from the metadata to include in the visualization graph. Second, parameter names can be pre-
fixed by the function name, so that they can easily be identified. Third, nodes representing the builtin Python None
object (that is the default return value of a Python function) can be omitted. Finally, nodes describing a sequence of
object access operations from containers (e.g., segment.analogsignals[0], which accesses the list in the analogsignals
attribute of segment, followed by retrieving its first element) can be condensed such that a single edge describing the
operation is generated. These visualization options reduce clutter and facilitate the visual inspection of the recorded
provenance information.
Finally, the provenance graphs can become large when repeated operations are performed within the script, such

as using a for loop to iterate over several data objects to perform computations. Therefore, an aggregation and
summarization are available, adapted from the functionality already implemented in NetworkX (from version 2.6).
It uses the Summarization by Grouping Nodes on Attributes and Pairwise edges (SNAP) aggregation algorithm, and

Table 2. Composition of URN identifiers for each element described in the Alpaca provenance records

A.

Alpaca ontology class Identifier

DataObjectEntity urn:[authority]:alpaca:object:Python:[class name]:[object hash]
FileEntity urn:[authority]:alpaca:file:[hash type]:[file hash]
FunctionExecution urn:[authority]:alpaca:function_execution:Python:[script file hash]:[session ID]:[function name]#[execution ID]
Function urn:[authority]:alpaca:function:Python:[function name]
ScriptAgent urn:[authority]:alpaca:script:Python:[script file name]:[script file hash]#[session ID]

B.

Identifier element Description

Authority String defining the authority associated with the records
Class name Name of the object class in Python, with full module path from the source package where it is implemented
Object hash Content hash of the Python object
Hash type Method to hash the file (currently only SHA256 is supported)
File hash Hash value of the file
Script file hash SHA256 hash of the Python file containing the script source code
Session ID UUID generated when activating Alpaca tracking (session ID)
Function name Name of the function, with full module path from the source package
Execution ID UUID generated during the execution of the function (execution ID)
Script file name Name of the file containing the source code

A, general schema for the composition of the identifier associated with each class in the ontology. B, details of identifier parts mentioned between brackets in A.

Research Article: Methods/New Tools 15 of 31

June 2024, 11(6). DOI: https://doi.org/10.1523/ENEURO.0476-23.2024. 15 of 31

http://graphml.graphdrawing.org
http://graphml.graphdrawing.org
https://gephi.org
https://gephi.org
https://pyvis.readthedocs.io
https://pyvis.readthedocs.io
https://pyvis.readthedocs.io
https://doi.org/10.1523/ENEURO.0476-23.2024


Figure 9. Example of the serialization of a single function execution with the Alpaca ontology. Top: information captured during the execution of a function
(welch_psd) taking a Neo AnalogSignal as data input and returning a Quantity array. Bottom: the Alpaca ontology classes are used to represent the input/
output objects and the function execution. The relationships from PROV-O are used to describe most relationships of the provenance. All elements are
associated with the script as an agent. Object metadata and function parameters are serialized using the extended properties and relations provided
by Alpaca (an example for a function parameter is shown in red using hasParameter, and for an object attribute in green using hasAttribute). In the dia-
gram, the gray circles represent blank nodes of the NameValuePair class. Some additional properties captured and serialized during the function execu-
tion were omitted in the diagram here for clarity. prov: is the PROV-O namespace. Whenever a namespace is not defined, the class or property belongs to
the Alpaca ontology.

Figure 10. Example of a NetworkX graph generated from the RDF files serialized using the Alpaca ontology. This shows the expected nodes (two
DataObjectEntities and one FunctionExecution) from the example in Figure 9. Node attributes of DataObjectEntities are included in the provenance
trail if they are selected by the user when generating the graph using Alpaca functionality (attributes selected in the context of the use case scenario
are shown in bold).

Research Article: Methods/New Tools 16 of 31

June 2024, 11(6). DOI: https://doi.org/10.1523/ENEURO.0476-23.2024. 16 of 31

https://doi.org/10.1523/ENEURO.0476-23.2024


was modified from the original implementation to allow the selection of specific attributes of a set of nodes. Moreover,
for functions executed with distinct sets of parameters, the different values can also be taken into account when iden-
tifying similarity of nodes in summarizing the graph. The aggregation generates supernodes that represent not a single
execution and data, but several identical or similar processing nodes. The identifiers of the individual elements that were
aggregated in the supernode are listed in the members node attribute. The total number of nodes aggregated into the
supernode is stored in the member_count node attribute. In the end, the user can aggregate several nodes together,
depending on whether they share the values of a given attribute, which allows the generation of a simplified version
of the provenance trace that provides a more general overview of the analysis.

Code accessibility
The code to reproduce the analyses presented as use case in this paper is freely available online at https://github.com/

INM-6/alpaca_use_case. Figures 1, 2, 4–10, and 14Awere manually created using Inkscape. Figures 3 and 13A are direct
outputs of the corresponding scripts. Figures 11, 12, 13B, and 14B were created from graph visualization files generated

Figure 11. Overview of the provenance captured by Alpaca stored in R2G_PSD_all_subjects.ttl. A, Visualization of the full (non-aggregated) graph corre-
sponding to R2G_PSD_all_subjects.ttl. Each graph region (color coded) corresponds to the processing for a single subject (monkey N or monkey L) and
trial type (PGHF, PGLF, SGHF, or SGLF). B, Sequential object access operations are simplified such that only a single edge represents attribute and sub-
script access. Original example (top): addressing the first Segment object within the Block requires accessing its segments attribute, followed by retrieving
the first element (index 0). Simplified version (bottom): the edge shows the operation as .segments[0]. The same simplification is applied to values stored in
the annotations dictionary. C, Processing of an individual trial. Details of data objects and function parameters can be inspected. Values of selected attri-
butes and annotations are shown below the data node labels. Function nodes are dark red with labels in italic. Exact parameters for the butter function
execution are shown in the table. D, Loading of the NIX data file of each subject (monkey L: green; monkey N: blue). Function load_data (dark red) loaded
each file and returned a Block object (subject_name annotation identifies the corresponding subject). The first Segment of the Block was used for further
processing. E, Generation of R2G_PSD_all_subjects.png from the matplotlib Figure object. In D and E, the path and hash of files can be inspected.

Research Article: Methods/New Tools 17 of 31

June 2024, 11(6). DOI: https://doi.org/10.1523/ENEURO.0476-23.2024. 17 of 31

https://github.com/INM-6/alpaca_use_case
https://github.com/INM-6/alpaca_use_case
https://github.com/INM-6/alpaca_use_case
https://doi.org/10.1523/ENEURO.0476-23.2024


by the corresponding scripts (GEXF format). The GEXF files were loaded into Gephi (version 0.9.7) and nodes were edited
for color, position, and size. The graphs were exported to Scalable Vector Graphics (SVG) files that were manually edited
using Inkscape to compose the final figures. Editing involved adjusting label sizes and adding information available as
node attributes in Gephi. The data used for the analysis can be found at https://gin.g-node.org/INT/multielectrode_
grasp. All codes used in this manuscript are also available as Extended Data.

Results
In the following, we will describe and evaluate the analysis provenance captured by Alpaca in the use case scenario

described in Section 2.2. After running psd_by_trial_type.py with the code modified to use Alpaca, a detailed provenance
trace was obtained and stored as R2G_PSD_all_subjects.ttl. Corresponding GEXF graph files for visualization were gen-
erated, with distinct levels of aggregation and granularity of the steps in psd_by_trial_type.py, ranging from a fine-grained
view to a summarizing birds-eye view. The interactive analysis of those graphs using Gephi are presented in the form of a
video (accessible at https://purl.org/alpaca/video). Here, we will present the main features of the provenance trace using
severalGephi graph exports. Then, we detail how they address the four challenges for tracking provenance of the analysis
we identified in the Materials and Methods and Figure 1.

Overview of the captured provenance
Figure 11A shows the overview of the graph generated from R2G_PSD_all_subjects.ttl (None objects returned by func-

tions were removed). Overall, 3,579 nodes and 4,313 edges are present, and the graph has eight colored regions. Each
region corresponds to the iterations of the two outer loops in psd_by_trial_type.py (i.e., loop over two subjects × loop
over four trial types resulting in eight iterations; Fig. 4). For the remainder of this study, the visualization is optimized to
remove memberships due to the access of Neo objects in containers that introduces extra nodes in the graph. This sim-
plification is illustrated in Figure 11B.
Using the timeline feature of Gephi, it is possible to isolate specific parts of the graph (Fig. 11A) based on the execution

order of statements in thePython code. Here, we single out the timewindow that corresponds to the processing of a single
trial in a loop iteration (Fig. 11C ) and then inspect individual attributes of the objects and parameters of the functions
involved until the computation of the PSD. It is possible to inspect the start and end time points of the trial segment
with respect to the recording time in the dataset using the t_start and t_stop attributes of the Segment object at the begin-
ning of the trace, thus uniquely identifying the analyzed data segment. It is also possible to review the AnalogSignal object
containing the data that were later processed and used to compute the PSD by the welch_psd function of Elephant.
General attributes, such as the shape of the data array of the AnalogSignal object, can be accessed together with specific
metadata, such as the names of the channels associated with the time series in the data. Finally, for these intermediate
steps, it is possible to inspect specific parameters passed to each function: the attributes of FunctionExecution graph
nodes (shown example: butter) corresponding to function parameters are prefixed by the function name, followed by
the name of the argument as defined in the Python function definition (cf., Fig. 10). Taken together, Alpaca captured these
types of information for each individual step throughout the execution of psd_by_trial_type.py such that each iteration of
the central analysis can be traced in detail after completion of the script.
It is possible to retrace the first steps after loading the two data files (Fig. 11D). A function called load_data (defined in

psd_by_trial_type.py) was called with the neural data file (available as a dataset in the NIX file format) of one particular subject
as input and returning aBlock objectwith all the data of that recording session.We can inspect the subject_name annotation of
Block and identify in human-readable text which subject corresponds to each object. We can alternatively bind each Block to
the specific source data file, by inspecting the File node associated with each object, and obtain the SHA256 hash (data_hash
node attribute). Although the actual path used in the analysis (File_path node attribute) will point to the actual location of the file
in the system where the script was run, the hash will allow the identification of the file regardless of its name and location.
Moreover, the graph shows that the first Segment stored in the Block was accessed (through the segments attribute of
Block), and this was the main source for all subsequent analysis done for each monkey. By inspecting the node of the
Segment object, we have access to its attributes and annotations, such as the starting and end times of the data in recording
time (−0.0021 and 1003.2122s for subject monkey N, and 0.0 and 709.2480s for monkey L; Fig. 11D).
In a similar way as described above for reading the input data, we can inspect the generation of the output file (Fig. 11E).

It was obtained from a matplotlib Figure object that was initialized by a function at the beginning of the script execution
(create_main_plot_objects), was successively filled with graphs as power spectra were calculated, and finally saved to
disk as a PNG file using a function called save_plot.

Understanding the data preprocessing
Figure 12A shows the sequence of steps applied to the Segment object that contains the full data for one subject. When

aggregated by function parameters (i.e., simplified based on similarity of function parameters), the graph shows four sepa-
rate paths that start from each of the two Segment objects (one per subject). Each is comprised of the Neo functions
get_event, add_epoch, and cut_segment_by_epoch. Each of those functions performs a specific action: identify specific
events during the recording (stored in an Event object) according to selection criteria, select a window of data around these

Research Article: Methods/New Tools 18 of 31

June 2024, 11(6). DOI: https://doi.org/10.1523/ENEURO.0476-23.2024. 18 of 31

https://gin.g-node.org/INT/multielectrode_grasp
https://gin.g-node.org/INT/multielectrode_grasp
https://gin.g-node.org/INT/multielectrode_grasp
https://purl.org/alpaca/video
https://purl.org/alpaca/video
https://doi.org/10.1523/ENEURO.0476-23.2024


identified event timestamps (stored in an Epoch object), and finally use the windows stored in the Epoch object to cut the
large Segment, producing one Segment object per epoch containing a window.
We can now analyze the captured provenance to verify the detailed parameters used in each of those preprocessing

functions. get_event used a parameter called properties, together with the Segment object as input. That parameter
defines a dictionary with keys and values that are compared to the annotations or attributes of aNeo Event object in order
to select the desired subset of all events recorded during the experiment. All four paths considered the CUE-OFF event of
correct trials (defined by the trial_event_labels = ‘CUE-OFF’ and performance_in_trial_str = ‘correct_trial’ dictionary
entries). However, in each path, the function was called with the belongs_to_trialtype value containing one of the four pos-
sible trial labels: PGHF, PGLF, SGHF, or SGLF. Therefore, each Event object returned by get_eventwill contain the times of
CUE-OFF of all correct trials of one of the four trial types.
The times of the generated Event objects were used to define epochs and cut the data to obtain segments of the trials of

a particular type. Inspecting the subsequent executions of the functions add_epoch and cut_segment_by_epoch, their
parameters show that epochs were defined as 500ms after the CUE-OFF event (pre = 0.0ms and post = 500.0ms),
and the absolute recording times were preserved when cutting (reset_time=False). Therefore, for each subject, we can
partition the provenance graph in four separate paths, each dealing with processing data of a particular trial type (the outer
loops of psd_by_trial_type.py; Fig. 2). Not only these selection criteria for extracting the data are retained by the prove-
nance trail, but also we can retrieve the precise time points used for cutting the data and calculated only during run
time based on the loaded data on a trial-by-trial basis (by inspecting the t_start and t_stop attributes of each Segment
generated by cut_segment_by_epoch). Overall, Alpaca allowed us to understand the initial data preprocessing and trial
definitions, addressing challenges 1 and 2.

Inspecting the data flow used to generate a result
The figure stored in R2G_PSD_all_subjects.png and shown in Figure 3 could have been produced by different versions

of psd_by_trial_type.py, with steps in different order or new steps added. A likely scenario is the necessity to filter out some
channels for one of the datasets. In Figure 12B, we see that for each subject, a user-defined function called select_chan-
nels was applied to the data. For monkey L, it is apparent from the shapes of the data arrays that two recording channels
were excluded (due to signal quality), such that only 94 of the 96 recording channels were used. The provenance track
captured by Alpaca shows this, as the returnedAnalogSignal object is different from the object containing all the channels,
and the shape attribute shows the removal of the two channels.
At this point, it is possible to bind R2G_PSD_all_subjects.ttl to R2G_PSD_all_subjects.png through the SHA256 hash of

the file written by the function save_plot (Fig. 11E). R2G_PSD_all_subjects.ttl will also have all the function executions
linked to the script identifier, obtained from the hash of psd_by_trial_type.py and session ID (cf. Table 2). Thus, it was pos-
sible to record all operations within a single script together with the actual parameters used. In this way, the provenance
information can be used to automatically capture and retain the ongoing development process from the perspective of the
generated results, addressing challenges 2 and 3.

Reviewing analysis parameters
In between runs of a single version of psd_by_trial_type.py, the analysis parameters could also have been changed,

leading to alternate versions of the PSD estimates inR2G_PSD_all_subjects.png generated by each run. A scenario where
this is likely to occur is one where the scientist performing the analysis may have iterated the code execution several times
to find a set of parameters that allowed a good visualization of the power spectra.
The provenance track captured by Alpaca allows to inspect the values of each individual function call. From the

AnalogSignal object after channel selection, there is a common pathway in the aggregated graph for both subjects
(Fig. 12B). The functions butter, AnalogSignal.downsample, and finally welch_psd were called sequentially. Those corre-
spond to the filtering, downsampling, and computation of the PSD using the Welch method. Each of those functions have
key parameters that will affect the PSD estimate, and the parameters were captured automatically.
We can use the provenance information to verify that a 250Hz low-pass cutoff was used for the filtering (from the param-

eter passed to the Elephant butter function). Moreover, we verify that the signal was downsampled by a factor of 60
(method downsample from the AnalogSignal object). By inspecting the shapes of the AnalogSignal objects that are input
and output of the function, we can verify the downsample operation: the input object had 15,000 samples and, after
AnalogSignal.downsample, the number was reduced to 250.
Finally, it is possible to inspect all the parameters for the PSD computation using the Elephant welch_psd function: a

Hanning window was used, for an estimate with a 2Hz frequency resolution. The resulting objects storing the frequency
bins and power estimates (Quantity arrays) are discernible by the units attribute. The frequency array has a dimension of
126, which is expected for a PSD of a continuous signal downsampled to 500Hz andwith a frequency resolution of 2Hz. It
is also possible to observe that the power estimates are a two-dimensional array with first dimensions of 96 (for monkey N)
and 94 (for monkey L), which agree with the source AnalogSignal objects and indicate the number of channels. Therefore,
the power estimates were obtained for each channel as a single array.

Research Article: Methods/New Tools 19 of 31

June 2024, 11(6). DOI: https://doi.org/10.1523/ENEURO.0476-23.2024. 19 of 31

https://doi.org/10.1523/ENEURO.0476-23.2024


Addressing challenges 1 and 2, it possible to retrieve the value of any parameter that may have resulted from trial and
error iterations during the development of psd_by_trial_type.py, as the provenance information shows the detailed history
of the generation of the data objects that were ultimately used by the plotting function.

Figure 12. Alpaca captured the detailed provenance of R2G_PSD_all_subjects.png. Function nodes are labeled in italic and data objects in normal style.
The multipliers next to a node show how many similar nodes were aggregated at that step. Selected function parameters are shown in the tables. A, The
aggregated graph demonstrates common steps in preprocessing the Segment objects containing data of monkey L (left) and monkey N (right). For each
trial type, the Neo function get_events extracted the times of the CUE-OFF events of correct trials (see properties parameter in the table; dictionary key
names are in italic). Each execution of get_events used distinct belongs_to_trialtype values (color in table matches color in graph). Neo functions add_e-
poch and cut_segment_by_epochwere called with same parameters across monkeys/trial types to extract data as Segment objects corresponding to 500
ms after CUE-OFF (dark blue). The number of trials can be inferred from themultipliers of theSegment objects. The details for the preprocessing of monkey
N/SGHF trials are shown (dark gray). B, Analysis steps after cutting data into trials (aggregated for each monkey/trial type). The values of the shape and
units attributes ofQuantity objects are shown inside the node. Function select_channelswas executed taking the AnalogSignalwith the electrode data for
the trial (dark brown; n=135 trials for monkey L and n=142 trials for monkey N). For monkey L, channels 2 and 4 (‘chan 2’ and ‘chan 4’ values in the chan-
nel_names array annotation) were removed. All trials (n=277) were processed similarly (red shades), consisting of applying a 250Hz low-pass Butterworth
filter (function butter), downsampling to 500Hz, and computing a PSD using the Welch method using a Hanning window with 50% overlap and 2Hz fre-
quency resolution (function welch_psd). For each Quantity array with power spectra, an average across channels was obtained (orange shades) and for
eachmonkey/trial type (n=8), those estimates were combined to obtain an array for that trial type (pink shades; the shapes of the arrays match the number
of trials obtained in the preprocessing). Mean and standard error of the mean (SEM) across trials were obtained from these arrays (purple shades) and
plotted (green shades).

Research Article: Methods/New Tools 20 of 31

June 2024, 11(6). DOI: https://doi.org/10.1523/ENEURO.0476-23.2024. 20 of 31

https://doi.org/10.1523/ENEURO.0476-23.2024


Facilitating sharing of analysis results
When sharing R2G_PSD_all_subjects.png with others, some parts of the figure leave guesswork to the collaborator.

However, R2G_PSD_all_subjects.ttl contains several missing pieces of information that are not accessible from the figure
stored in R2G_PSD_all_subjects.png alone.
In addition to the details of the analysis steps presented above, it is also possible to know the last steps used to

transform the data before plotting the lines and intervals using the plot_lfp_psd function (Fig. 12B). First, an
average of the power across all channels was obtained for each trial. The NumPy mean function was applied to the
array with the per-channel power estimates, over the first axis (axis = 0 parameter). Then, the channel averages of
all trials of the same trial type of a single subject were averaged in a grand mean (using the NumPy mean function).
The individual trial averages were also used to obtain a SEM estimate (using the SciPy sem function). Finally, the grand
mean and SEM were passed to the plot_lfp_psd function that performed the plotting in the AxesSubplot object cor-
responding to the graph panel for that subject, taking the multiplier 1.96 as a parameter to define the width of the inter-
vals. Not only all these steps are now apparent, but it is also possible to know how many trials were used for
each subject when plotting (monkey N: PGHF = 36, PGLF = 35, SGHF = 36, or SGLF = 35; monkey L: PGHF = 33,
PGLF = 31, SGHF = 30, or SGLF = 41; Fig. 12A and B). In addition, for each call of plot_lfp_psd it is possible to inspect
the parameter providing the legend label with respect to the source of the mean, SEM, and frequency data used as
inputs.
As mentioned above, two electrode channels were excluded in the analysis of monkey L data. The provenance infor-

mation in R2G_PSD_all_subjects.ttl makes it possible to check the channel_names annotations of each AnalogSignal
object used in each iteration when computing the PSD (Fig. 12B). The inspected labels show that channels 2 and 4
were excluded for this monkey.
An additional scenario to illustrate how to make use of the captured provenance in a shared environment is presented in

Figure 13A. Here, a plot resembling the one presented in Figure 3 is stored in R2G_PSD_all_subjects.png. However, the lines
and interval area boundaries appear smoothed, suggesting the plot was generated by an alternate version of psd_by_trial_ty-
pe.py. The provenance captured by Alpaca reveals steps after the aggregation of the power estimates across trials. Spline
smoothing objects from the SciPy package were used to generate new arrays that were the inputs to the plotting function
plot_lfp_psd (Fig. 13B). With this information, collaborators receiving R2G_PSD_all_subjects.png can clearly identify that
the plot is not showing the actual estimates but a smoothed version.
In summary, addressing challenge 4, the provenance information captured by Alpaca facilitates sharing

R2G_PSD_all_subjects.png as it provides additional information for finding and understanding the results without requir-
ing extra work by the scientist performing the analysis.

Provenance capture in parallelization and multiple-script scenarios
The complexity of electrophysiology analysis workflows can increase inmultiple ways to accommodate the demands on

data size and computational load of a particular analysis. In the following we explore in how far Alpaca can be integrated in
two such scenarios, illustrated by the use case example (Fig. 14Ai).
Oneway is to adopt parallelization approaches inside a single script, such as using themessage passing interface (MPI).

In this approach, a script is run multiple times as separate simultaneous processes, and each run is given an identifier
(rank). A script such as psd_by_trial_type.py could have the control flow modified, for example, such that each iteration
in the main for loop processing the two subject files (i.e., monkey N or monkey L; Fig. 4) would be executed in different
processes according to the rank value defined for that script execution (Fig. 14Aii). At the end of the loop iteration, the
in-memory arrays with the computed PSDs are transferred to the main process (rank 0) using MPI routines to produce
the plots and the final PNG file R2G_PSD_all_subjects.png. This approach allows the distribution of the execution of
each iteration among the different compute cores.
A second way consists of breaking a complex script into smaller scripts that perform more atomic parts of the anal-

ysis, a common approach for electrophysiology data analysis pipelines. In this scenario, inputs of later scripts are the
outputs of earlier scripts in the pipeline (i.e., there is a sequential dependence among the scripts). In our example,
psd_by_trial_type.py could be broken into two main steps: the first reads an experimental dataset and computes the
PSDs for each trial type, and the second creates the plot objects, takes the PSD data from both datasets, plots it using
matplotlib, and saves the plot as R2G_PSD_all_subjects.png (Fig. 14Aiii). Although this requires saving the data with the
computed PSDs into intermediate files (which adds a file input/output performance cost), the workflow can be orches-
trated by management systems such as Snakemake that control the parallel or sequential execution of the steps
according to the file dependencies (i.e., the PSDs of either monkey N or monkey L can be estimated simultaneously,
but the final plotting step must wait for the availability of the PSD data from both subjects). Snakemake can distribute
the execution of parts of the analysis to specific compute cores and reuses data from previous steps if changes are
made to a script in a later step.
As Alpaca tracks the provenance of single-script runs, we implemented the two scenarios described above to

demonstrate how to use the tool to track provenance in complex multi-script or parallelization scenarios. Each sce-
nario uses the same functions as the psd_by_trial_type.py script described for the use case example, and is instru-
mented with Alpaca in the same way. Modifications were introduced only to accommodate the requirements for

Research Article: Methods/New Tools 21 of 31

June 2024, 11(6). DOI: https://doi.org/10.1523/ENEURO.0476-23.2024. 21 of 31

https://doi.org/10.1523/ENEURO.0476-23.2024


parallelization or breaking the steps into multiple scripts. For MPI, the control flow is modified to process a single sub-
ject loop iteration, to plot only on rank 0, and to perform an MPI send/receive operation before the execution of the
plotting functions. For Snakemake, steps were added to save/load intermediate PSD data as (pickle) files. Each script
execution generates an RDF file containing the provenance of that single execution. In the MPI example, 2 RDF
files are saved (from rank 0 and 1 executions, respectively). In the Snakemake example, 3 RDF files are obtained:
two in the step to compute the PSDs (for either monkey N or monkey L) and one in the step for plotting. The data
from all RDF files of either MPI (2 files) or Snakemake (3 files) examples are trivially combined into a single RDF graph
to visualize provenance as a graph. Figure 14B compares the graphs obtained for each scenario after aggregation.
Due to the unique identifiers generated by Alpaca, when the provenance data of the distributed executions were com-
bined, a fully connected graph describing the whole analysis emerged (e.g., in the Snakemake example, the identifiers
of the files saved in step 1 are the same when read by step 2). The resulting provenance tracks of the MPI (Fig. 14Aii)
and the Snakemake (Fig. 14Aiii) scenarios are highly similar to the single-script scenario (Fig. 14Ai), with minor differ-
ences due to the changes needed to accommodate the parallelization or multi-script orchestration (e.g., reading addi-
tional files).
Therefore, the script-based tracking of provenance using Alpaca can be used in these more complex and distributed

scenarios, yielding a merged provenance record that provides the overview of the whole analysis process.

Figure 13. Provenance captured by Alpaca shows transformations of the results before plotting. A, Alternate version of R2G_PSD_all_subjects.png. The
lines appear smoothed in comparison to the plot shown in Figure 3. B, Provenance track showing the steps after the computation and aggregation of the
PSDs across channels and trials, before plotting with plot_lfp_psd. The visualization graph was aggregated to demonstrate the common steps when plot-
ting the different estimates for each subject and trial type. Nodes in darker shades with labels in italic are function calls and nodes in lighter shades with
labels in normal style are data objects. The steps also present in the generation of the plot in Figure 3 are highlighted in red (top; some labels omitted for
clarity). TheNumPy array (with SEM estimates) andQuantity arrays (with PSDs or frequencies) used in the original R2G_PSD_all_subjects.png are shown in
purple (array shape and physical quantity are shown inside the nodes). In contrast to the generation of the original plot, an additional function computed the
error line values (pink shades). Next, the NumPy arrays with error estimates or the Quantity arrays with PSD estimates were passed together with the
Quantity array with frequencies to the SciPy functionmake_interp_spline, which generates a BSpline interpolation object (green shades show the interpo-
lation steps). For the interpolation using BSpline, an array with 500 elements between 0 and 50 was generated with NumPy linspace function (orange
shades; the function node is highlighted with a black border). The detailed parameters for linspace recorded by Alpaca are shown in the table. This
NumPy array was converted to a Quantity array that was used with the interpolation objects to obtain the final error and PSD arrays used in the plots
(blue nodes).

Research Article: Methods/New Tools 22 of 31

June 2024, 11(6). DOI: https://doi.org/10.1523/ENEURO.0476-23.2024. 22 of 31

https://doi.org/10.1523/ENEURO.0476-23.2024


Figure 14. Alpaca can capture detailed provenance in parallelization and multi-script scenarios. A, Schematic representation of three possible scenarios
for the analysis presented as use case. Ai, Single script, corresponding to the original version of psd_by_trial_type.py. The script is run with the two data
files (N and L) as arguments. Each file is processed in a loop (red and blue rectangles), which computes the PSDs for each trial type (filled rectangles). The
PSDs in memory are aggregated, plotted and saved as R2G_PSD_all_subjects.png (green rectangles). Aii, psd_by_trial_type.py is modified to perform the
analysis using message passing interface (MPI) parallelization. The script is run as two parallel processes, taking both data files as arguments. The main
process (rank 0) performs operations involved in plotting the data from both subjects and saving R2G_PSD_all_subjects.png (green shapes). It executes
only the loop iteration for monkey N (red rectangle). The second process (rank 1) executes only the loop iteration for monkey L (blue rectangle). At the end of
the loop for rank 1, the PSD data in memory (filled blue rectangle) is transferred to themain process usingMPI (orange arrow) to be aggregated and plotted.
Alpaca generates 2 separate RDF files with the provenance of the execution of rank 0 and 1, respectively. Aiii, psd_by_trial_type.py is broken into a multi-
script workflow executed using Snakemake. The operations were split into 2 steps, each implemented as a single script. The first step reads a single data
file, computes the PSDs for each trial type, and saves the in-memory data to files. This step corresponds to a single loop iteration in panel Ai (red and blue
rectangles). The second step reads all the files, plots the PSDs, and saves R2G_PSD_all_subjects.png (green shapes). The execution produces 3 RDF files
with provenance information. B, The 2 RDF files of scenario Aii and the 3 files of scenario Aiii were trivially combined (concatenated) to obtain a single
provenance graph for each scenario. For visualization, each provenance graph was automatically aggregated by Alpaca to show the main steps of the
workflow. The aggregated graphs of scenarios Ai–Aiii are compared for the presence or absence of specific nodes and edges. Nodes in dark shades

Research Article: Methods/New Tools 23 of 31

June 2024, 11(6). DOI: https://doi.org/10.1523/ENEURO.0476-23.2024. 23 of 31

https://doi.org/10.1523/ENEURO.0476-23.2024


Discussion
We presented Alpaca, a toolbox to capture fine-grained provenance information when executing Python code, with a

specific focus on scripts that analyze data. The information is saved as a metadata file that represents a sidecar file to
the saved analysis results. Using a realistic use case analysis of calculating power spectra estimates in amassively parallel
electrophysiology dataset, we showed how this captured provenance metadata helps in understanding an electrophys-
iology analysis result that could ultimately be shared among collaborators. With the help of graph visualizations, it is pos-
sible to inspect the data flow across functions together with other details that were available at run time, such as object
attributes and annotations and function parameters. The toolbox takes advantage of existing standards to represent elec-
trophysiology data in Python (e.g., Neo) by also capturing relevant object metadata into the provenance records. In the
end, it was possible to obtain detailed information that were not available from the result file alone. This provided a better
context for the interpretation of an analysis result and adds to the rigor in its reuse.
In the beginning, we introduced four challenges associated with the analysis of electrophysiology datasets that we

aimed to consider in designing a toolbox to capture provenance. We then showed, using our concrete use case, that
Alpaca addresses these challenges. First, the customized data preprocessing routine using functionality of theNeo pack-
age was described in the provenance record with all the relevant parameters. Second, any state of the parameters of the
functions called in the script and the data flow will be automatically recorded together with the results to allow detailed
comparisons as the script is developed and adapted over time. Third, in agile, iterative analysis scenarios, the changes
to the source code or execution order of code blocks lead to different result files and to different provenance tracks
that can be bound to the result files and code by the file and script identifiers, respectively. Finally, Alpaca provided a struc-
tured provenance record describing the history of generation of R2G_PSD_all_subjects.png as an additional file that is
suitable for sharing together with the results. This serialized provenance makes not only information available in the
plot in Figure 3 (e.g., subject names, units) but also that were not apparent at all (e.g., the annotations employed to select
the timestamps of the CUE-OFF events that are the start time of the trial data used) accessible in a machine-readable for-
mat that can be inspected by scientists receiving the shared analysis results. Overall, the provenance information captured
by Alpaca delivers the information required for understanding and interpreting an electrophysiology analysis result, facil-
itating especially work in collaborative environments.
Trust is a key factor in experimental data analysis, especially in collaborative contexts. Result artifacts (files, figures, etc.)

are useful as long as the processes that generated them fit the hypotheses and research questions that guided the anal-
ysis in the first place. As provenance information describes the data and its transformations, it is expected that it should
help in building trust in the analysis of electrophysiology data. Improving trust in the analysis is one of the focuses of
Alpaca, and the provenance information captured as a metadata file helps in that direction. With the example presented
in this paper, we demonstrated that the toolbox describes the analysis processes in detail, reducing uncertainty on every
step of the data analysis. Data loading, preprocessing, signal processing, obtaining the actual PSD estimates, and pre-
paring the data for plotting and saving the result file were apparent when analyzing the provenance records saved as
R2G_PSD_all_subjects.ttl. In addition, the key parameters that determine each intermediate result are clearly defined.
In the end, Alpaca contributes to building trust in the processing of analyzing data in collaborative environments and shar-
ing results among peers.
Alpaca might improve the reproducibility of the results when analyzing electrophysiology data. Considering reproduc-

ibility as the ability to reproduce a given analysis result by different individuals in different settings, the detailed information
provided by Alpaca provides a good description of the processes involved in the generation of the analysis result even in
the absence of the original script. Although a full re-execution or reconstruction of the source code is neither possible nor
the goal of the tool, still it is possible to know the sequence of functions used, their source packages and versions, and the
relevant parameters in a level of detail that would help in any reimplementation of the analysis pipeline from scratch. The
provided identifiers and hasheswould also help in checking whether the data objects are equivalent between runs, without
having to serialize the full object data at each step. In the end, although the generation of the exact result file will require the
re-execution of the original script, the information summarized by Alpaca already makes any attempts to reproduce the
results using a different code more likely to succeed.
Alpaca also contributes to make the electrophysiology data analysis results more compliant to the FAIR principles

(Wilkinson et al., 2016). These were developed to provide recommendations and requisites to increase the findability,
accessibility, interoperability, and reusability of data. While typically considered in the context of the source data files
obtained from an experiment, the principles could be extended to include artifacts such as a result stored in
R2G_PSD_all_subjects.png. Indeed, increasing the FAIRness of such electrophysiology analysis results would bring sev-
eral benefits. First, if the results are findable, it is easier to navigate among a collection of results such as hundreds of files

�
are function calls, and nodes in light shades are data objects (only labels of function names are shown for clarity). Nodes and edges that overlap in all three
scenarios are shown in gray shades. The captured provenance shows a nearly identical structure in the three scenarios, with a fully connected graph
describing the whole analysis process including data loading, data analysis, plotting and saving. In the MPI scenario, only an operation describing how
the string to define the plot title was fetched from the Block annotations is missing (dotted orange edges). In the Snakemake scenario, few additional steps
exist to save/load the data to/from the intermediate files (light blue nodes and edges).

Research Article: Methods/New Tools 24 of 31

June 2024, 11(6). DOI: https://doi.org/10.1523/ENEURO.0476-23.2024. 24 of 31

https://doi.org/10.1523/ENEURO.0476-23.2024


in a shared folder. Second, the interoperability would allow for the comparison of similar results produced by different
implementations of a single method (such as the case of different Python toolboxes providing similar analysis functions,
such as the computation of a PSD using the Welch method that is available in Elephant, SciPy, MNE (Gramfort et al.,
2013), andmany others). Finally, the reusability of the results would eliminate the necessity of repeating required analyses
when they were already performed. In the use case presented in this paper, a collaborator might be interested in using the
PSD estimates as a starting point for further analyses of the same experimental datasets. If the existing
R2G_PSD_all_subjects.png already provided an adequate analysis with respect to the preprocessed trial data, signal
processing, parameters of the PSD estimates, and aggregation over channels and trials, she could simply reuse it to
make any required inferences before starting her analysis. Alpaca provides advances mainly with respect to the reusabil-
ity FAIR principle, as the analysis results are obtained with detailed provenance, and the results are also described with
accurate and relevant attributes such as the annotations present in theNeo data objects. However, Alpaca also improves
the interoperability and findability of the results. Regarding interoperability, first the provenance information is structured
in a machine-readable format, using the PROV provenance model that defines a broadly used vocabulary for provenance
representation. Moreover, the metadata (in the form of attributes and annotations of the data objects) and function
parameters (that can be seen as a special kind of metadata when considering what is proposed in the FAIR principles)
are also structured in a machine-readable format defined formally in the Alpaca ontology. Finally, the findability of the
results is improved, as Alpaca binds the identifiers of the individual data objects, files, script, functions, and function exe-
cutions to the analysis outcome, making it queriable via, e.g., the functions used in generating the outcome or by specific
parameter settings. In the end, although a fully FAIR-compliant solution requires the development of additional resources
such as controlled vocabularies and ontologies to represent the electrophysiology data analysis processes, Alpaca
already provided increased adherence of the electrophysiology analysis result to the FAIR principles.
Besides those improvements associated with the machine-readability of the captured provenance, Alpaca also facili-

tates the access to the provenance of the analysis results by humans. Facilitating data interpretation is one of the primary
focuses of Alpaca. The visualization graphs generated from the RDF files eliminate the necessity of complicated tools such
as SPARQL Protocol and RDF Query Language (SPARQL) queries to extract and interact with the captured provenance.
This ability to explore the provenance graphs and inspect data object attributes and annotations as well as function
parameters allows the scientist to visually understand the details of each individual data transformation which facilitates
the interpretation and understanding of the analysis result. This is complemented by the possibility to aggregate similar
nodes in the graphs producing summarizations. While these lose the fine-grained details, they provide a high-level over-
view that is more descriptive of the analysis process than any accompanying textual documentation or the script source
code. Ultimately, Alpaca not only records the provenance information for documentation purposes, but helps in under-
standing and interpreting the analysis result.
Users familiar with graph databases can insert the generated RDF files into triple stores and use the SPARQL query lan-

guage to introspect the analysis results without relying on the visual graphs. This is an alternative to complement the graph
visualizations to obtainmore direct answers to specific questions about the provenance of the result (e.g., obtain the list of
all distinct functions used to generate a file).
One design feature of Alpaca is that it does not provide a description of the control flow in the script. This is apparent

from themain structure of the provenance graph of the example presented in Figure 11A, where each iteration of a for loop
appeared as a separate path starting from the function that generated the objects accessed in the loop. From the imple-
mentation perspective, the same graph would be obtained if the source code was structured in a way that the access of
individual elements was done without a loop (i.e., instead of looping over a container with N elements, insert N function
calls, each using a different element from the container). Therefore, at this point, it is not possible to use the saved prov-
enance tomake inferences about the code. In contrast, the data-centric approach taken by Alpacawas developedwith the
aim of exposing the data and its transformations, and relevant parameters and metadata. Thus, we consider that the
resulting provenance lacks complexity while making the data flow clear, regardless of the control flow used to achieve it.
The analysis of electrophysiology data frequently involves more complex workflows than a single script such as the one

presented in the example. We demonstrated in Figure 14 that Alpaca can track provenance in multi-script workflows
where parallelization is involved. Therefore, the tool is helpful in highly parallelized environments where scripts are fre-
quently used, such as high-performance clusters. The script-based approach could also be useful in cloud-based scenar-
ios where Python scripts can be executed, such as Amazon Web Services (AWS) Elastic Cloud instances, or dedicated
services for scientific computing, such asCodeOcean and EBRAINS. Code not implemented in a functional programming
style is still poorly supported in this initial version, and this capability is a point to be addressed in future versions of the
tool. However, the current functionality is expected to accommodate several typical use cases for analyzing electrophys-
iology data.

Comparison with existing tools
There are existing tools that aim to capture and describe provenance during the execution of scripts, and each tool has

distinct technical approaches and aims to accomplish distinct objectives (Pimentel et al., 2019 for a review). One approach
is to capture provenance during the script run time, as adopted by Alpaca. In this context, we highlight noWorkflow (Murta
et al., 2015), as it was intended to be used in a similar scenario than Alpaca, i.e., the execution of standalonePython scripts

Research Article: Methods/New Tools 25 of 31

June 2024, 11(6). DOI: https://doi.org/10.1523/ENEURO.0476-23.2024. 25 of 31

https://doi.org/10.1523/ENEURO.0476-23.2024


that analyze data and produce output files. However, in contrast to Alpaca, noWorkflow does not require code instrumen-
tation, but relies on a custom command line tool to run the script. The noWorkflow tool performs an a priori analysis of the
code together with tracing during the script execution to provide a very in-depth description of the sequence of functions
called and to generate a detailed call graph as provenance information. All the information is captured and saved in a local
database. The focus of noWorkflow is storing and describing repeated runs of the code (trials), highlighting the differences
and evolution across trials. Although noWorkflow provides a very detailed description of the analysis process at the level of
every function call (which is not possible for Alpaca as it tracks only the functions identified by the decorator), it falls short
for some aspects introduced by Alpaca. First, we decided to save provenance using a data model derived from PROV,
which increases interoperability, while noWorkflow currently relies on a custom relational database to structure the infor-
mation on the function executions. Moreover, Alpaca aims to provide an extended description of the data objects across
the script execution, whichwas implemented in the ontology used in the RDF serialization. Together with the description of
the sequence of functions executed, this additional information is relevant for the understanding of the analysis result,
especially regarding metadata provided as annotations. An example in the presented use case is the identification of
the data pertaining to the individual trial types. noWorkflow would have shown the loops and sequence of Neo functions
used to cut the data into the smaller trial segments, but the annotations identifying each Event object used for the prepro-
cessing using those functions would not be accessible. In the end, this relevant information is accessible from the prov-
enance records provided by Alpaca. Overall, Alpaca captures provenance with a different perspective on the analysis
process, that is more relevant for the particularities of electrophysiology data analysis as introduced at the beginning
of this paper.
AiiDA (Pizzi et al., 2016) is another tool that can be used to capture provenance in data analysis workflows implemented

in Python. It was developed as a complete solution for the automation, management, persistence, sharing, and reproduc-
ibility of complex workflows.With respect to data provenance,AiiDA tracks and records the inputs, outputs, andmetadata
of computations and produces a complete provenance graph. The technical approach is similar to Alpaca since it also
uses decorators to instrument the code. However, AiiDA has other design features: (i) it saves provenance in a centralized
storage; (ii) as part of the provenance tracking, any data object can be saved to the database with a unique identifier, allow-
ing its retrieval later for reuse together with the lineage. In the end, AiiDA is a more holistic tool for reproducibility than
Alpaca, as it is possible to re-execute the analysis using the same data objects previously stored. However, we also iden-
tify limitations in comparison to Alpaca. First, AiiDA requires any existing data objects (such as the ones provided by the
Neo framework) to be wrapped by custom objects so that the system can identify and serialize their content to the data-
base, which can be achieved through a plugin system. This means that the user must implement this interface for any and
every specific data object in a custom framework. This not only requires a considerable amount of effort but this may also
introduce a level of maintenance complexity as the data framework evolves and the user needs to ensure that the wrap-
pers retain compatibility in the future. With the approach taken by Alpaca, we tried to keep the original Python objects
without any fundamental transformation in their structure, and therefore we focused on identifying them using the
URNs so that the lineage graph can be constructed, together with the description of their relevant metadata. An additional
limitation ofAiiDA is the overall setup of the system to obtain the provenance information. In the approach taken by Alpaca,
the provenance information is saved locally as RDF in an additional file that should accompany the actual results produced
by the script, using the interoperable PROV data model. Although sharing the information requires the user to also share
the provenance metadata file together, which is less convenient than just querying a database using a command line tool
such as the one provided byAiiDA, this adds simplicity to use the tool as no special services are required to be set up at the
user system. It is important to note that, at this point, the individual RDF files produced by Alpaca could also be stored into
a centralized RDF triple store system (either locally or remote) in order to provide similar functionality, if desired. Finally, a
third limitation is the use of a non-interoperable standard for description of provenance, as the provenance graphs by
AiiDA rely on a custom description of the data and control flows, and obtaining the provenance graphs requires the
user to query the information using the specificAiiDA application programming interface (API) as opposed as using a stan-
dard such as SPARQL. In the end, in comparison to AiiDA, Alpaca has a reduced entry barrier to implement provenance
tracking into existing scripts, which may be relevant for the average electrophysiology lab to start benefiting from prove-
nance capture during the analysis of their experimental data. It is likely that each of the two tools focus on the needs
brought by different application scenarios, such as a small lab versus a large research institute. For the small lab, improve-
ments in collaborative work in the analysis of electrophysiology data by capturing more detailed provenance might be
quickly achieved by using a tool like Alpaca.
Recently, CAESAR (CollAborative Environment for Scientific Analysis with Reproducibility) was proposed as a solution

for the end-to-end description of provenance in scientific experiments (Samuel and König-Ries, 2022a). The overarching
goal of CAESAR is to capture, query, and visualize the complete path of a scientific experiment, from the design to the
results, while providing interoperability. This was achieved by the implementation of the REPRODUCE-MEmodel for prov-
enance (Samuel and König-Ries, 2022b), based on existing ontologies such as PROV-O (Lebo et al., 2013) and P-Plan
(Garijo and Gil, 2012). A solution called ProvBook is also provided in order to support reproducibility and to describe
the provenance of the analysis part of the experiment implemented as Jupyter notebooks. Alpaca shares similar concepts
with CAESAR, as we extended PROV-O to obtain an interoperable description of provenance. However, the provenance
information provided by Alpaca is more detailed with respect to the analysis part, which is the main goal of the tool. While

Research Article: Methods/New Tools 26 of 31

June 2024, 11(6). DOI: https://doi.org/10.1523/ENEURO.0476-23.2024. 26 of 31

https://doi.org/10.1523/ENEURO.0476-23.2024


CAESAR/ProvBook provides overall descriptions of changes in the source code of Jupyter notebook cells (and the asso-
ciated results produced by those changes), the details of the functions called inside each cell are not described with the
same level of detail as Alpaca. Moreover, although CAESAR supports the capture and interoperable serialization of meta-
data throughout the experiment, Alpaca structures metadata for data objects throughout the code execution during the
analysis (e.g., the annotations and attributes of Neo objects), which provides a more fine-grained description of the data
evolution (e.g., the removal of the two channels from the data frommonkey L in the use case example). In the end,CAESAR
is a useful tool to capture overall aspects of provenance during the execution of an analysis in the context of an electro-
physiology experiment. However, the additional level of detail provided by Alpaca is complementary and could be used to
provide additional levels to the provenance, while retaining interoperability.
The fairworkflows library aims to make workflows implemented within Jupyter notebooks more compliant with the FAIR

principles (Richardson et al., 2021). The library uses decorators to add semantic information to the Python code. After their
execution, fairworkflows constructs RDF graphs describing the workflows using P-Plan (Garijo and Gil, 2012) and other
ontologies defined by the user in the annotations (Celebi et al., 2020). This is linked to the provenance information that
is captured during the execution and structured using PROV-O and can be published in the form of nanopublications
(Kuhn et al., 2016). The use of decorators to instrument the functions is similar to Alpaca, and the decorators of fairwork-
flows might be used within scripts such as psd_by_trial_type.py. However, while Alpaca makes a distinction between
inputs, outputs, and parameters (from the arguments that a Python function can take and its return values), fairworkflows
makes a direct mapping of arguments as inputs and function returns as outputs. Therefore, the semantic model for prov-
enance in Alpaca emphasizes the identification of the parameters relevant to control the execution of particular functions.
For example, in the computation of the PSD using welch_psd, fairworkflows would consider the 2Hz value an input to the
function, when Alpaca records it as the special property hasParameter. This is particularly relevant when querying the
information using SPARQL, for instance. Moreover, Alpaca also captures and describes detailed information about the
objects, which we showed to be relevant for the correct interpretation of the results. However, the extra information
from the semantic annotations in fairworkflows could be combined with Alpaca to provide more descriptive provenance
and published using the nanopublication engine.
Computational models are frequently used together with electrophysiology experiments to understand brain function

and dynamics. Several state-of-the art simulation engines (e.g., NEural Simulation Tool, Gewaltig and Diesmann, 2007;
NEURON, Hines and Carnevale, 1997; Brian, Goodman and Brette, 2008) are available, and many are implemented in
Python or provide high-level Python interfaces where neuronal models with different complexities and biological details
can be easily constructed using Python scripts (e.g., by using an interface such as PyNN; Davison et al., 2009). In this con-
text, Alpaca might be useful to track the sequence of functions and respective parameters used to instantiate the models
in the simulator and run the simulations. This could be used as a complement to tools such as Sumatra (Davison et al.,
2014), which functions as an electronic lab notebook for simulations, capturing coarse level provenance when executing
simulation scripts. Another example is for a tool such as beNNch (Albers et al., 2022), which implements a modular work-
flow for performance benchmarking of neuronal network simulations and could profit from a more fine-grained capture of
details in the model and configuration step. Therefore, there is the possibility of also using Alpaca outside of experimental
scenarios.
A useful tool for electrophysiology data analysis pipelines is a WMS such as Snakemake (Köster and Rahmann, 2012).

A particularity of Snakemake as a WMS is that it orchestrates the execution of different steps that can take the form of
custom Python scripts, instead of modular and specific workflow elements such as the ones provided by a WMS such
as LONI Pipeline (MacKenzie-Graham et al., 2008). This is attractive when working with electrophysiology data as different
aspects of the analysis process (as mentioned in Section 1) can be considered yet providing modular and reusable
elements (Gutzen et al., 2024). The Snakemake WMS is based on binding input and output files as dependencies to
each script executed in sequence. Therefore, one could envision a scenario where a script such as psd_by_trial_type.py
would have all parameters passed by command line and the execution was controlled by Snakemake. In this
scenario, Snakemake would describe the NIX files and the the file R2G_PSD_all_subjects.png as inputs and output of
psd_by_trial_type.py, respectively, together with the description of the command line parameters. However, this would
still rely on the correct mapping of all command line parameters to the actual Python functions (such as the filter cutoff
in butter or frequency resolution in welch_psd). Any parameters potentially hard coded directly into the function calls
would not be captured and would result in a wrong or incomplete description of provenance. In contrast, all function-level
parameters are tracked automatically with Alpaca. We successfully demonstrated that Alpaca integrates with Snakemake,
providing detailed provenance of the operations within the scripts while taking advantage of theWMS orchestration capa-
bilities (Fig. 14). Finally, the provenance description of a Snakemake execution in the form of directed acyclic graphs is
currently stored in a non-interoperable format. Therefore, Alpaca can be a complementary solution to use with
Snakemake in more complex analysis scenarios, such as the ones that require multiple scripts. However, the provenance
description is enhanced: while the coarse provenance at the file/script level can be provided by Snakemake, the additional
metadata file produced by Alpaca provides a more fine-grained level of detail regarding each step of the workflow, while
adding interoperability.
Alpaca might also complement existing technologies frequently used to analyze electrophysiology data, especially in

cloud-based and collaborative environments. DataJoint (RRID:SCR_014543; https://datajoint.com) is a database-

Research Article: Methods/New Tools 27 of 31

June 2024, 11(6). DOI: https://doi.org/10.1523/ENEURO.0476-23.2024. 27 of 31

https://datajoint.com
https://datajoint.com
https://doi.org/10.1523/ENEURO.0476-23.2024


centered approach to computing and storing analysis results using tailored relational models (Yatsenko et al., 2018).
Workflows for the analysis of neurophysiology data can be implemented usingMATLAB orPython-based APIs using reus-
able and curated components (Yatsenko et al., 2015, 2021). We could expect that Alpaca would track and describe the
individual operations performed by the Python objects modeling the underlying database and analyses according to
theDataJoint framework. However, the challenges of a deeper integration will warrant additional investigation. In addition,
CodeOcean (RRID:SCR_015532; https://codeocean.com) is a cloud-based service for computational reproducibility, pro-
viding the execution environment in containers that integrate code and data into a “compute capsule.” This ensures the
reproducibility of the code execution, and the history of the executions is tracked together with the results, all accessible
through a Web interface. At this point, the provenance provided by Code Ocean will expose details of capsule executions
and files produced. In parallel, Alpaca can be used to extract detailed information on the execution inside the capsule’s
code. This additional provenance could be linked to the coarse provenance provided by Code Ocean. Additional inves-
tigation is required to align the provenance information between Alpaca and different execution and workflow environ-
ments and database frameworks.

Limitations
The initial implementation of Alpaca described in this article has some limitations with respect to the scope and visual-

ization of the captured provenance. Here, we describe these and suggest remedies.
First, Alpaca is not capturing and saving information regarding the execution environment such as Python interpreter

information, packages installed, operating system, and hardware details. However, there are existing tools that can be
used for that purpose and that could be used to run a script instrumented with Alpaca (e.g., Sumatra; Davison et al.,
2014). Moreover, Alpaca could be integrated with such tools to use the information provided by them in the saved prov-
enance records. In the end, we focused on adding granularity instead of reimplementing functionality of existing tools, as
this information is more relevant for understanding and sharing the electrophysiology analysis result.
Second, the Alpaca ontology is currently not structured to allow the description of the execution environment. It could

be further expanded to include any information regarding the environment, as one could envision a revised Alpaca prov-
enance model and ontology with a PROV Agent subclass that would be related to ScriptAgent, and whose properties
would describe the relevant aspects of the environment. Moreover, the description could be further improved by integra-
tion with other ontologies developed specifically for the detailed description of experimental workflows, such as P-Plan
(Garijo and Gil, 2012) and REPRODUCE-ME (Samuel and König-Ries, 2022b). Therefore, although not present in this initial
implementation, the approach adopted allows easy expansion and integration of additional features.
Third, some steps are visible from the data flow perspective but they are not fully descriptive and understandable at this

point. One example is a user-defined function, such as plot_lfp_psd in psd_by_trial_type.py. As a plotting function, the
user might be interested in knowing additional details on how the inputs (i.e., the matplotlib AxesSubplot object and
the arrays with the data) were handled. The current implementation tracks code in a single scope, and therefore the exe-
cution of a function such as plot_lfp_psd is treated as a “black box.” It would be interesting to also capture the execution of
some functions with an even finer description of the operations inside those functions. This could be achieved by expand-
ing the functionality to automatically include functions in levels lower than the primary capture scope. However, even in the
current implementation of Alpaca, although such fine descriptions from inside of plot_lfp_psd are not available, the prov-
enance stored in the generated metadata file already points to where the function was implemented. In this way, the user
can focus on inspecting the implementation of the function plot_lfp_psd and does not have to check the full source code.
Fourth, only a generic visualization graph is currently provided in Alpaca. The initial version of Alpaca is intended to pro-

vide the basic model and functionality to capture and describe provenance when analyzing electrophysiology data while
providing essential visualization. Although we took the approach to leverage the advantage of open source graph visual-
ization tools such asGephi, the visualization of the captured provenance is not optimized (e.g., showing only parameters of
the selected function or object). Such optimized visualization can be incorporated as additional feature in Alpaca without
any changes to the captured information or serialization as RDF, by using existing graph visualization frameworks such as
Pyvis to build a customized visualization environment based on the information in the RDF graphs and the Alpaca prov-
enancemodel. Finally, there are existing tools that specifically deal with the visualization of provenance graphs. One exam-
ple is AVOCADO (Stitz et al., 2016), implemented to be an interactive provenance graph visualization tool that exploits the
topological structure of the graph to provide a visual aggregation. Although Alpaca provides basic aggregation using func-
tionality adapted from NetworkX, we could also leverage a tool like AVOCADO to provide visualization functionality more
tailored to the features of a provenance graph, such as hierarchical structure (e.g., all the steps in a single-trial-processing
loop grouped in a single node) and temporal evolution (isolating the visualization of the analyses performed in the first or the
second dataset). However, the technical challenges of such integration are unknown at this point.
Fifth, although the design of Alpaca allows capturing and describing any Python object used by a function, the serial-

ization of extended details according to the Alpaca PROV model (i.e., attributes and annotations) is currently limited to
NumPy-based objects such as NumPy arrays, quantities arrays, and Neo objects. With this initial version of Alpaca, we
aimed to establish the foundational capabilities to describe data object metadata in the captured provenance, as this
is an essential feature to understand and interpret the analysis result, without focusing on extensive coverage of the
data models currently available in Python. It is important to mention that the functionality to describe the data objects

Research Article: Methods/New Tools 28 of 31

June 2024, 11(6). DOI: https://doi.org/10.1523/ENEURO.0476-23.2024. 28 of 31

https://codeocean.com
https://codeocean.com
https://doi.org/10.1523/ENEURO.0476-23.2024


in detail is already implemented as a plugin system, where a Python package can insert a specific function to fetch infor-
mation from objects used by that package. Therefore, support for capturing detailed information besides those selected
cases (e.g.,NWB or Pandas DataFrames) can be achieved by implementing the relevant function for the package and add-
ing a new interface for the user to define attributes of a particular object to be captured.
Finally, Alpaca does not allow rerunning the code to reproduce the analysis result fully. This was not the focus of the tool,

and such functionality could be achieved by integrating with existing tools that allow code re-execution. One candidate is
Sumatra, as it not only captures the information on the environment but also allows re-executing the script with the same
parameters as the original run. Moreover, we demonstrated that Alpaca can easily integrate with a script-basedWMS such
as Snakemake that supports re-executing the code. Rerunning the analysis can also be accomplished within systems that
control script execution, such as Code Ocean. In the end, any existing tool that properly manages environment manage-
ment and script invocationsmight be used to rerun the code, while Alpaca adds an additional level of detail to the captured
provenance aimed at increasing interpretability.

Future directions
Several improvements are planned for Alpaca in the future. First, we plan to expand the toolbox to also capture prov-

enance for analyses implemented using Jupyter notebooks. Not only is Jupyter extensively used for exploratory data anal-
ysis, but also the repeated execution of code cells and subsequent substitution of data objects in memory requires
detailed provenance tracking for reliable description of any analysis result produced by a notebook.
Also, the provenance records lack semantic information that are relevant for understanding electrophysiology data and

metadata. Therefore, a further improvement is to allow the inclusion of classes and vocabularies defined in domain-
specific ontologies in the provenance records, which will bring further improvements to the FAIRness of electrophysiology
analysis results. Using semantic information will improve the interpretation of the captured provenance by scientists unfa-
miliar with the script code and toolboxes used in the analysis. For instance, the graph visualizations could be improved
with this information to display a human-readable, programming language independent label defined in the ontology class
instead of the function names defined in the Python code. This would help understand steps using functions defined in
analysis toolboxes (e.g., Elephant and Neo) and user-defined functions, whose understanding requires referring to the
original code. This would also allow an easier assessment of differences and similarities when comparing provenance
from different analyses and further simplify understanding the provenance outside the context of the original code.
The functionality will also be improved to capture information about the execution environment, together with

information from version control systems such as git, to provide more detailed information about the source code
that originated the analysis result. Planned improvements include automatically capturing information on the Python inter-
preter, operating system and hardware, and details of thePython packages where the functions are implemented (cf., e.g.,
Sumatra).
Furthermore, we propose to integrate a specific tool to aid in comparing different provenance files to facilitate identifying

differences between analyses. The goal is to leverage information provided by the provenance model implemented by
Alpaca, especially the metadata captured as attributes and annotations, in order to help scientists draw informed conclu-
sions based on differences among a set of results.
We aim to further improve the interaction and analysis of the captured provenance by developing a custom visualization

and search interface based on the serialized RDF graphs. This tailored visualization interface is planned to be aware of the
provenance model implemented in Alpaca, and use more user-friendly resources such as floating labels to show annota-
tions and attributes of the data or function parameters, or interactive visualization controls such as graph expansion/
aggregation on demand.
Finally, we aim to investigate how the captured provenance can be integrated with existing tools in the neurophysiology

data ecosystem. A potential integration is how to incorporate the generated provenance metadata into standards to share
neurophysiology data, such as NIX andNWB file formats. Files written using these standards could easily embed the RDF
files or their information as metadata. In addition, Alpaca could be integrated with Python packages used in the manipu-
lation, preprocessing, and analysis of electrophysiology data (e.g., Neo, SpikeInterface, Elephant) to provide embedded
provenance capture functionality, eliminating the requirement for the user to instrument functions from packages that are
frequently used.

Conclusions
We implemented Alpaca, a toolbox for lightweight provenance capture during the execution of Python scripts used for

the analysis of electrophysiology data. Alpaca capturesmore detailed information about the analysis processes, including
not only the lineage of the data but also embedded metadata relevant for the description of data objects during the pro-
cessing pipeline. In the end, this makes the electrophysiology analysis result artifacts more compliant to the FAIR princi-
ples. This may improve research reproducibility and the trust in the results, especially in collaborative environments.
Therefore, Alpaca may be a valuable tool to facilitate sharing electrophysiology data analysis results.

Research Article: Methods/New Tools 29 of 31

June 2024, 11(6). DOI: https://doi.org/10.1523/ENEURO.0476-23.2024. 29 of 31

https://doi.org/10.1523/ENEURO.0476-23.2024


References
Adida B, Birbeck M, McCarron S, Herman I (2015) RDFa Core

1.1—third edition. W3C Recommendation.
Albers J, et al. (2022) Amodular workflow for performance benchmark-

ing of neuronal network simulations. Front Neuroinform 16:837549.
Baker M (2016) 1,500 scientists lift the lid on reproducibility. Nature

533:452–454.
Bastian M, Heymann S, Jacomy M (2009) Gephi: an open source soft-

ware for exploring and manipulating networks. In: Proceedings of
the international AAAI conference on web and social media,
Vol. 3, pp 361–362.

Bavoil L, Callahan S, Crossno P, Freire J, Scheidegger C, Silva C, Vo H
(2005) VisTrails: enabling interactive multiple-view visualizations.
In: VIS 05. IEEE visualization, pp 135–142.

Belhajjame K, et al. (2013) PROV-DM: the PROV data model. W3C
Recommendation.

Brochier T, Zehl L, Hao Y, Duret M, Sprenger J, Denker M, Grün S,
Riehle A (2018) Massively parallel recordings in macaque motor
cortex during an instructed delayed reach-to-grasp task. Sci
Data 5:180055.

BrownEN,KaasRE,Mitra PP (2004)Multiple neural spike train data anal-
ysis: state-of-the-art and future challenges. Nat Neurosci 7:456–461.

Buccino AP, Hurwitz CL, Garcia S, Magland J, Siegle JH, Hurwitz R,
Hennig MH (2020) SpikeInterface, a unified framework for spike
sorting. eLife 9:e61834.

Buzsáki G (2004) Large-scale recording of neuronal ensembles. Nat
Neurosci 7:446–451.

Buzsáki G, Anastassiou CA, Koch C (2012) The origin of extracellular
fields and currents—EEG, ECoG, LFP and spikes. Nat Rev
Neurosci 13:407–420.

Celebi R, Moreira JR, Hassan AA, Ayyar S, Ridder L, Kuhn T,
Dumontier M (2020) Towards FAIR protocols and workflows: the
OpenPREDICT use case. PeerJ Comput Sci 6:e281.

Davison A, Brüderle D, Eppler JM, Kremkow J, Muller E, Pecevski D,
Perrinet L, Yger P (2009) PyNN: a common interface for neuronal
network simulators. Front Neuroinform 2:11.

Davison AP, Mattioni M, Samarkanov D, Teleńczuk B (2014) Sumatra:
a toolkit for reproducible research. In: Implementing reproducible
research (Stodden V, Leisch F, Peng RD, eds), pp 57–79. Boca
Raton (FL): Chapman and Hall/CRC.

Denker M, Grün S (2016) Designing workflows for the reproducible
analysis of electrophysiological data. In: Brain-inspired computing
(Amunts K, Grandinetti L, Lippert T, Petkov N, eds), Vol. 10087 of
Lecture notes in computer science, pp 58–72. Cham: Springer
International Publishing.

Denker M, Yegenoglu A, Grün S (2018) Collaborative HPC-enabled
workflows on the HBP Collaboratory using the Elephant frame-
work. In: Neuroinformatics 2018, p 19.

Garcia S, et al. (2014) Neo: an object model for handling electrophys-
iology data in multiple formats. Front Neuroinform 8:10.

Garijo D, Gil Y (2012) Augmenting PROV with plans in P-PLAN: scien-
tific processes as linked data. In: Proceedings of the second inter-
national workshop on linked science 2012—tackling big data
(Kauppinen T, Pouchard LC, Keßler C, eds). CEUR Workshop
Proceedings.

Gewaltig MO, Diesmann M (2007) NEST (NEural Simulation Tool).
Scholarpedia J 2:1430.

Goodman D, Brette R (2008) Brian: a simulator for spiking neural net-
works in python. Front Neuroinform 2:5.

Gramfort A, et al. (2013) MEG and EEG data analysis with
MNE-Python. Front Neurosci 7:267.

Groth P, Moreau L (2013) PROV-overview: an overview of the PROV
family of documents. W3C Note.

Gutzen R, et al. (2024) A modular and adaptable analysis pipeline to
compare slow cerebral rhythms across heterogeneous datasets.
Cell Rep Meth 4:100681.

Hagberg AA, Schult DA, Swart PJ (2008) Exploring network structure,
dynamics, and function using NetworkX. In: Proceedings of the 7th

Python in science conference (Varoquaux G, Vaught T, Millman J,
eds), pp 11–15.

HinesML, Carnevale NT (1997) The NEURON simulation environment.
Neural Comput 9:1179–1209.

Hong G, Lieber CM (2019) Novel electrode technologies for neural
recordings. Nat Rev Neurosci 20:330–345.

Huang Z (2016) Brief history and development of electrophysiological
recording techniques in neuroscience. In:Signal processing in neu-
roscience (Li X, ed), pp 1–10. Singapore: Springer.

Kluyver T, et al. (2016) Jupyter notebooks—a publishing format for
reproducible computational workflows. In: Positioning and power
in academic publishing: players, agents and agendas (Loizides F,
Scmidt B, eds), pp 87–90. IOS Press.

Köster J, Rahmann S (2012) Snakemake—a scalable bioinformatics
workflow engine. Bioinformatics 28:2520–2522.

Kuhn T, Chichester C, Krauthammer M, Queralt-Rosinach N, Verborgh
R, Giannakopoulos G, Ngomo ACN, Viglianti R, Dumontier M
(2016) Decentralized provenance-aware publishing with nanopu-
blications. PeerJ Comput Sci 2:e78.

Lebo T, Sahoo S, McGuinness D, Belhajjame K, Cheney J, Corsar D,
Garijo D, Soiland-Reyes S, Zednik S, Zhao J (2013) PROV-O: the
PROV ontology. W3C Recommendation.

MacKenzie-Graham AJ, Payan A, Dinov ID, Van Horn JD, Toga AW
(2008) Neuroimaging data provenance using the loni
pipeline workflow environment. In: Provenance and annotation
of data and processes (Freire J, Koop D, Moreau L, eds), Vol.
5272 of Lecture notes in computer science, pp 208–220. Berlin:
Springer.

Muller E, Bednar JA, DiesmannM, Gewaltig MO, Hines M, Davison AP
(2015) Python in neuroscience. Front Neuroinform 9:11.

Murta L, Braganholo V, Chirigati F, Koop D, Freire J (2015)
noWorkflow: capturing and analyzing provenance of scripts. In:
Provenance and annotation of data and processes (Ludäscher B,
Plale B, eds), Vol. 8628 of Lecture notes in computer science,
pp 71–83. Cham: Springer International Publishing.

Percival DB, Walden AT (1993) Spectral analysis for physical applica-
tions. Cambridge: Cambridge University Press.

Perrone G, Unpingco J, Lu Hm (2020) “Network Visualizations with
Pyvis and VisJS.” arXiv:2006.04951.

Pimentel JF, Freire J,Murta L, Braganholo V (2019) A survey on collect-
ing, managing, and analyzing provenance from scripts. ACM
Comput Surv 52:1–38.

Pizzi G, Cepellotti A, Sabatini R, Marzari N, Kozinsky B (2016) AiiDA:
automated interactive infrastructure and database for computa-
tional science. Comput Mater Sci 111:218–230.

Ragan ED, Endert A, Sanyal J, Chen J (2016) Characterizing prove-
nance in visualization and data analysis: an organizational frame-
work of provenance types and purposes. IEEE Trans Vis Comput
Graph 22:31–40.

RichardsonRA,Celebi R, van der Burg S, Smits D, Ridder L, Dumontier
M, Kuhn T (2021) User-friendly composition of FAIR workflows in a
notebook environment. In: K-CAP ’21: proceedings of the 11th
knowledge capture conference, pp 1–8. New York: Association
for Computing Machinery.

Rübel O, et al. (2022) The neurodata without borders ecosystem for
neurophysiological data science. eLife 11:e78362.

Saint-Andre P, Klensin JC (2017) Uniform resource names (URNs).
RFC 8141.

Samuel S, König-Ries B (2022a) A collaborative semantic-based prov-
enance management platform for reproducibility. PeerJ Comput
Sci 8:e921.

Samuel S, König-Ries B (2022b) End-to-end provenance
representation for the understandability and reproducibility of
scientific experiments using a semantic approach. J Biomed
Semant 13:1.

Stevenson IH, Kording KP (2011) How advances in neural recording
affect data analysis. Nat Neurosci 14:139–142.

Research Article: Methods/New Tools 30 of 31

June 2024, 11(6). DOI: https://doi.org/10.1523/ENEURO.0476-23.2024. 30 of 31

https://doi.org/10.1523/ENEURO.0476-23.2024


Stitz H, Luger S, Streit M, Gehlenborg N (2016) AVOCADO: visualiza-
tion of workflow-derived data provenance for reproducible biome-
dical research. Comput Graph Forum 35:481–490.

Stoewer A, Kellner CJ, Benda J, Wachtler T, Grewe J (2014) File format
and library for neuroscience data and metadata. In: Front.
Neuroinform. Conference abstract: Neuroinformatics 2014.

Welch P (1967) The use of fast Fourier transform for the estimation
of power spectra: a method based on time averaging over
short, modified periodograms. IEEE Trans Audio Electroacoust
15:70–73.

Wilkinson MD, et al. (2016) The FAIR guiding principles for scientific
data management and stewardship. Sci Data 3:160018.

Yatsenko D, et al. (2021) “DataJoint Elements: Data Workflows for
Neurophysiology.” bioRxiv:2021.03.30.437358.

Yatsenko D, Reimer J, Ecker AS, Walker EY, Sinz F, Berens P,
Hoenselaar A, Cotton RJ, Siapas AS, Tolias AS (2015)
“DataJoint: Managing Big Scientific Data Using MATLAB or
Python.” bioRxiv:031658.

Yatsenko D, Walker EY, Tolias AS (2018) “DataJoint: A Simpler
Relational Data Model.” arXiv:1807.11104.

Research Article: Methods/New Tools 31 of 31

June 2024, 11(6). DOI: https://doi.org/10.1523/ENEURO.0476-23.2024. 31 of 31

https://doi.org/10.1523/ENEURO.0476-23.2024

	 Introduction
	 Materials and Methods
	Outline placeholder
	 Challenges for provenance capture during the analysis of electrophysiology data
	 Use case scenario
	 Alpaca: a tool for automatic and lightweight provenance capture in Python scripts
	 Initializing Alpaca
	 Tracking the steps of the analysis
	 Serialization of the provenance information
	 Visualization of the serialized provenance

	 Code accessibility


	 Results
	 Overview of the captured provenance
	 Understanding the data preprocessing
	 Inspecting the data flow used to generate a result
	 Reviewing analysis parameters
	 Facilitating sharing of analysis results
	 Provenance capture in parallelization and multiple-script scenarios

	 Discussion
	 Comparison with existing tools
	 Limitations
	 Future directions
	 Conclusions

	 References

