001026279 001__ 1026279 001026279 005__ 20250512115735.0 001026279 0247_ $$2doi$$a10.1016/j.nxener.2024.100130 001026279 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-03358 001026279 0247_ $$2WOS$$aWOS:001470144100002 001026279 037__ $$aFZJ-2024-03358 001026279 082__ $$a333.7 001026279 1001_ $$0P:(DE-Juel1)156509$$aDashjav, Enkhtsetseg$$b0 001026279 245__ $$aPhase-field determination of NaSICON materials in the quaternary system Na2O-P2O5-SiO2-ZrO2: II. Glass-ceramics and the phantom of excessive vacancy formation 001026279 260__ $$a[Amsterdam]$$bElsevier$$c2024 001026279 3367_ $$2DRIVER$$aarticle 001026279 3367_ $$2DataCite$$aOutput Types/Journal article 001026279 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1723192253_7976 001026279 3367_ $$2BibTeX$$aARTICLE 001026279 3367_ $$2ORCID$$aJOURNAL_ARTICLE 001026279 3367_ $$00$$2EndNote$$aJournal Article 001026279 520__ $$aThis work focuses on a very narrow region in the quaternary system Na2O-P2O5-SiO2-ZrO2 to explore the occasionally proposed deficiency in zirconium and oxygen content of Na+ super-ionic conductor (NaSICON) materials. In addition, this region is known for the formation of glass-ceramics, but a systematic study of such materials has not been carried out yet. For this purpose, 2 series of compositions were defined and synthesized: Na3.4Zr2-3x/4Si2.4-x/4P0.6+x/4O12-11x/8 and Na3.4Zr2-3x/4Si2.4+x/4P0.6+1.5x/4O12-x/16. They only differ in the silicate and phosphate content. In the first series the molar content is constant, nSi + nP = 3. The latter series allows an excess of the 2 cations to meet the composition Na3.1Zr1.55Si2.3P0.7O11 or alternatively re-written as Na3.4Zr1.7Si2.52P0.77Ol2, which was formerly regarded as a superior material to the frequently reported composition Na3Zr2Si2POl2.Several characterization techniques were applied to better understand the relationships between phase formation, processing, and properties of the obtained glass ceramics in the context of the quasi-quaternary phase diagram. The investigations gave clear evidence that a glass phase is progressively formed with increasing x. Therefore, compounds with x > 0.2 have to be regarded as glass-ceramic composites. The resulting NaSICON materials revealed a very limited Zr deficiency with charge compensation by Na ions and a non-detectable amount of oxygen vacancies verified by neutron scattering and atomistic simulations.Hence, this work is the first systematic investigation of pretended Zr-deficient NaSICON materials, which clearly show the chemistry of a 2-phase region. The 2 investigated series are directed toward a region that is orthogonal to the series Na3Zr3-ySi2PyO11.5+y/2 reported in the first part of this series of publications. 001026279 536__ $$0G:(DE-HGF)POF4-1222$$a1222 - Components and Cells (POF4-122)$$cPOF4-122$$fPOF IV$$x0 001026279 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 001026279 7001_ $$0P:(DE-Juel1)129606$$aGerhards, Marie-Theres$$b1 001026279 7001_ $$0P:(DE-Juel1)166427$$aKlein, Felix$$b2 001026279 7001_ $$0P:(DE-Juel1)145209$$aGrüner, Daniel$$b3 001026279 7001_ $$0P:(DE-HGF)0$$aHansen, Thomas C.$$b4 001026279 7001_ $$0P:(DE-HGF)0$$aRohrer, Jochen$$b5 001026279 7001_ $$0P:(DE-HGF)0$$aAlbe, Karsten$$b6 001026279 7001_ $$0P:(DE-Juel1)171780$$aFattakhova-Rohlfing, Dina$$b7 001026279 7001_ $$0P:(DE-Juel1)129667$$aTietz, Frank$$b8$$eCorresponding author 001026279 773__ $$0PERI:(DE-600)3188222-5$$a10.1016/j.nxener.2024.100130$$gVol. 4, p. 100130 -$$p100130 -$$tNext energy$$v4$$x2949-821X$$y2024 001026279 8564_ $$uhttps://juser.fz-juelich.de/record/1026279/files/1-s2.0-S2949821X24000358-main.pdf$$yOpenAccess 001026279 8564_ $$uhttps://juser.fz-juelich.de/record/1026279/files/1-s2.0-S2949821X24000358-main.gif?subformat=icon$$xicon$$yOpenAccess 001026279 8564_ $$uhttps://juser.fz-juelich.de/record/1026279/files/1-s2.0-S2949821X24000358-main.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess 001026279 8564_ $$uhttps://juser.fz-juelich.de/record/1026279/files/1-s2.0-S2949821X24000358-main.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 001026279 8564_ $$uhttps://juser.fz-juelich.de/record/1026279/files/1-s2.0-S2949821X24000358-main.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 001026279 909CO $$ooai:juser.fz-juelich.de:1026279$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 001026279 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156509$$aForschungszentrum Jülich$$b0$$kFZJ 001026279 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129606$$aForschungszentrum Jülich$$b1$$kFZJ 001026279 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145209$$aForschungszentrum Jülich$$b3$$kFZJ 001026279 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171780$$aForschungszentrum Jülich$$b7$$kFZJ 001026279 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129667$$aForschungszentrum Jülich$$b8$$kFZJ 001026279 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1222$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0 001026279 9141_ $$y2024 001026279 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 001026279 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0 001026279 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-12-27T14:28:22Z 001026279 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-12-27T14:28:22Z 001026279 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-12-27T14:28:22Z 001026279 920__ $$lyes 001026279 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0 001026279 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x1 001026279 980__ $$ajournal 001026279 980__ $$aVDB 001026279 980__ $$aI:(DE-Juel1)IEK-1-20101013 001026279 980__ $$aI:(DE-Juel1)IEK-2-20101013 001026279 980__ $$aUNRESTRICTED 001026279 9801_ $$aFullTexts 001026279 981__ $$aI:(DE-Juel1)IMD-1-20101013 001026279 981__ $$aI:(DE-Juel1)IMD-2-20101013