
Case Studies on the Impact and Challenges of
Heterogeneous NUMA Architectures for HPC

Lilia Zaourar , Mohamed Benazouz , Ayoub Mouhagir , Carlos
Falquez , Antoni Portero , Nam Ho , Estela Suarez , Polydoros

Petrakis , Manolis Marazakis , Francesco Sgherzi , Ivan Fernandez ,
Romain Dolbeau , and Dirk Pleiter

1 Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France
{lilia.zaourar, mohamed.benazouz, ayoub.mouhagir}@cea.fr

2 Jülich Supercomputing Centre, Institute for Advanced Simulation,
Forschungszentrum Jülich GmbH, Jülich, Germany

{c.falquez, a.portero, n.ho, e.suarez}@fz-juelich.de
3 Institute of Computer Science, Foundation for Research and Technology - Hellas

(FORTH), Heraklion, Greece
{ppetrak,maraz}@ics.forth.gr

4 Barcelona Supercomputing Center (BSC), Barcelona, Spain
{francesco.sgherzi, ivan.fernandez}@bsc.es

5 SiPearl, Rennes, France
romain.dolbeau@sipearl.com

6 KTH Royal Institute of Technology, Stockholm, Sweden
pleiter@kth.se

Abstract. The memory systems of High-Performance Computing (HPC)
systems commonly feature non-uniform data paths to memory, i.e. are
non-uniform memory access (NUMA) architectures. Memory is divided
into multiple regions, with each processing unit having its own local mem-
ory. Therefore, for each processing unit access to local memory regions is
faster compared to accessing memory at non-local regions. Architectures
with hybrid memory technologies result in further non-uniformity. This
paper presents case studies of the performance potential and data place-
ment implications of non-uniform and heterogeneous memory in HPC
systems. Using the gem5 and VPSim simulation platforms, we model
NUMA systems with processors based on the ARMv8 Neoverse V1 Ref-
erence Design. The gem5 simulator provides a cycle-accurate view, while
VPSim offers greater simulation speed, with a high-level view of the
simulated system. We highlight the performance impact of design trade-
offs regarding NUMA node organization and System Level Cache (SLC)
group assignment, as well as Network-on-Chip (NoC) configuration. Our
case studies provide essential input to a co-design process involving HPC
processor architects and system integrators. A comparison of system con-
figurations for different NoC bandwidths shows reduced NoC latency
and high memory bandwidth improvement when NUMA control is en-
abled. Furthermore, a configuration with HBM2 memory organized as
four NUMA nodes highlights the memory bandwidth performance gap
and NoC queuing latency impact when comparing local vs. remote mem-
ory accesses. On the other hand, NUMA can result in an unbalanced

https://orcid.org/0000-0002-6660-4347
https://orcid.org/0000-0002-5229-785X
https://orcid.org/0000-0002-7237-1420
https://orcid.org/0000-0003-0382-7743
https://orcid.org/0000-0003-1319-6404
https://orcid.org/0000-0002-6973-4120
https://orcid.org/0000-0003-0748-7264
https://orcid.org/0000-0002-0224-5808
https://orcid.org/0000-0002-4768-3289
https://orcid.org/0000-0001-8319-7491
https://orcid.org/
https://orcid.org/0000-0002-4466-8948
https://orcid.org/0000-0001-7296-7817


distribution of memory accesses and reduced SLC hit ratios, as shown
with DDR4 memory organized as four NUMA nodes.

Keywords: Non-UniformMemory Access (NUMA), co-design, simulation, High
Performance Computing (HPC), benchmarking.

1 Introduction

High Performance Computing (HPC) has become increasingly relevant in vari-
ous important fields, such as weather modeling, drug discovery, financial simu-
lations, and genomics. Meeting the specific demands of these disciplines requires
optimization and possibly customization of HPC resources. On the hardware
side, this involves using multi-core CPUs, accelerators like GPUs or FPGAs,
and even specialized AI processors to offer higher levels of processing power to
execute complex simulations, data analytics, and machine learning tasks. HPC
systems require substantial memory capacity and bandwidth to handle large
datasets efficiently. High-bandwidth and low-latency networks are essential for
fast data communication between nodes in a cluster or across different clusters
for distributed computing. On the software side, HPC applications are designed
to utilize parallel processing capabilities effectively, and systems should scale
efficiently to handle larger workloads.

Various changes in hardware design, software optimization, and innovative
architectural approaches have been proposed to overcome the limitations of cur-
rent CPUs and Network On Chip (NoC) architectures regarding memory access
performance. Among them, NUMA is the prevalent computer architecture de-
sign used in HPC systems. It is a memory architecture that provides multiple
processors or computing nodes with access to a shared memory pool but with
varying access latencies. System with NUMA control allows division of the mem-
ory space in distinct regions where for each CPU one region can be considered
local. The CPUs or computing nodes are connected through an interconnect,
which allows them to communicate and access the shared memory pool. How-
ever, the access time to the shared memory is not uniform for all processing
units. Therefore, the key goal for NUMA control is to allow each processor or
computing node to exploit faster access to its local region, rather than accessing
far memory. Non-uniformity arises due to distance, latency, and bandwidth dif-
ferences between the processor and the memory regions. NUMA architectures are
designed to optimize memory access and minimize the impact of memory latency
on performance. By placing the data closer to the processors that frequently ac-
cess it, NUMA reduces the latency and enhances overall system performance.
Therefore, NUMA offers substantial advantages in HPC situations where par-
allel computing and high memory bandwidth are crucial. It facilitates efficient
memory sharing among multiple processors, minimizing latency and maximizing
data locality. This leads to enhanced scalability, reduced communication over-
head, and improved overall performance in HPC workloads. However, we should
note that NUMA designs in HPC are a necessity, as the complexity of handling



non-uniform memory accesses is substantial. More uniform designs for attaching
memory would be preferable, but are more expensive and difficult to implement.
In part it is also due to market realities. For HPC, single-socket designs would be
a reasonable option (eg. as in BlueGene and Fugaku), but the much bigger cloud
market dictates multi-socket (most commonly dual-socket) designs. Many com-
promises must be made to balance memory placement and computing resources
to obtain good performance. It involves modeling these aspects at early design
stages and benchmarking to perform efficient hardware/software co-design.

In this work, we model high-level and microarchitecture aspects to reflect
the ability to take NUMA effects into account on a complex and representative
processor architecture for HPC using the gem5 [13] and VPSim [5] simulation
platforms. Then, we present case studies of the performance potential and data
placement implications of NUMA in HPC systems using simulation models, in
both gem5 and VPSim. These case studies provide input to a co-design process
involving HPC System on a Chip (SoC) architects and system integrators.

2 Background

The concept of NUMA traces back to the 1990s. Historically, what is now under-
stood as NUMA was called ccNUMA (Cache Coherent Non-Uniform Memory
Access), and was commercially introduced in the Convex Examplar [23] and SGI
Origin [12]. As the entire system is cache coherent, the non-uniformity in NUMA
is one of performance. While all cores can access all memory, they observe dif-
ferent performance for different address ranges.

Up to the 2010s, NUMA was commonly a system-level or a board-level prop-
erty. Introduced in the large systems of the 1990s, NUMA became a common
feature in servers with the introduction of the AMD Opteron [10] and its in-
tegrated memory controller. Systems with more than one Opteron CPU would
have a NUMA effect when a core in one CPU would access memory connected to
the memory controller of a different CPU. Although this was not desirable from a
software point of view, it made the available bandwidth scalable with the number
of CPU, a highly desirable feature. Intel followed suit with the micro-architecture
code-named Nehalem [19], and all multi-CPU systems since are NUMA. Modern
operating systems are NUMA-aware, i.e. leverage for themselves and expose to
user code the underlying NUMA architecture. With the ever-expanding num-
ber of cores inside a CPU, full homogeneity and symmetry of behavior inside a
CPU is becoming difficult to maintain. The Intel micro-architecture code-named
Haswell [7] introduced Cluster-on-Die [8, 16], which exposes two NUMA nodes
in each CPU. It exposes a more explicit relationship between the cores and the
two memory controllers inside a socket.

The Intel Xeon Phi 72xx (micro-architecture code-named Knights Land-
ing) [21] was an even more explicit example, exposing up to four NUMA nodes
inside the socket in its SNC-4 (Sub-NUMA Clustering) mode [11]. This micro-
architecture did not support multi-socket systems, hence being the first NUMA
design to be entirely single-socket. This architecture established HPC archi-



tectures with nodes that feature main memory tiers based on heterogeneous
memory technologies. MCDRAM- and DDR4-based tiers could be used within a
single address space. With such a hybrid-memory design, existing mechanisms of
NUMA-awareness in system software could be applied to control non-uniformity
and heterogeneity in the memory system.

This evolution of NUMA is not a requirement from software - a uniform
system behavior is much easier for most users to deal with. It is the result
of hardware implementation requirements, which, when too strong, must be
exposed to higher levels (firmware, operating system, user code) so that they
can be taken into account by software. Historical Symmetric MultiProcessors
(SMPs) would put all the CPUs on a shared bus on which the memory controller
also connected, creating a uniform memory architecture. Early large systems
needed a dedicated network connecting multiple shared-bus to support coherency
between groups of CPU. From the AMD Opteron onward, this shared bus was
removed in favor of integrated memory controllers and dedicated socket-to-socket
communication channels (HyperTransport, QuickPath Interconnect).

The examples of Haswell and Knights Landing are a prelude to the current
situation, where the network required by the large systems of the 90s is now
needed inside each CPU to connect the cores. The number of cores in a single
CPU has become so large that the distance (topological and physical) between
a core and a memory controller has become significant and cannot be uniform.
The bandwidth requirements are also so large that multiple memory controllers
are also needed in each socket. Thus, there are many possible (core, memory
controller) pairs, each with its own latency and specific bandwidth bottlenecks.
A design like the Ampere Altra offers 80 cores. It can expose their 8 memory
channels as four NUMA nodes inside a single socket. The advent of in-package
High Bandwidth Memory (HBM) significantly increases available bandwidth,
but also exacerbates the effect of NUMA inside a socket. The Fujitsu A64FX
processor [18] uses in-package HBM2 memory and always exposes a NUMA node
per HBM stack, four in total. Exploiting such memory resources requires careful
management of potential bandwidth bottlenecks. It also involves optimization
of latency, as excessive latency limits the usable bandwidth.

Despite the substantial benefit in sharing the memory capacity of all nodes,
the relative distances of cores and memory elements lead to a performance chal-
lenge. The Linux kernel manages memory movement in NUMA systems based
on the node distance mechanism, which has been proven to have several inef-
ficiencies [4,24]. The node distances are provided by the system manufacturer
via the System Locality Information Table (SLIT) table, hence being a hard-
coded value specified at boot-time suggesting an ordering between NUMA node
distances, rather than an actual distance. Moreover, node distance values do
not consider memory characteristics. Today’s CPUs support several memory-like
devices that can be attached at will and serve as additional memory [17,26], as
well as supporting various Dynamic RAM (DRAM) kinds as main memory [20].
Blindly trusting node distance implies that the operating system might decide
that using an HBM stack in a far NUMA node might be less beneficial than



using a near Double Data Rate (DDR), even if HBM would yield higher band-
widths for streaming-like accesses. The introduction of HMAT (Heterogeneous
Memory Attribute Table [1]) in the ACPI (Advanced Configuration and Power
Interface) standard might help by providing more comprehensive information in
the future, but they are not yet commonly available in hardware platforms.

3 NUMA architecture: modeling and exploration

We consider in this work a General Purpose Processor (GPP) based on the
ARMv8 Neoverse V1 Reference Design, with 2x256 bits Scalable Vector Ex-
tension (SVE) instructions [22]. The core has separate 64 KiB L1 data and
instruction caches and a private unified data and instruction 1 MiB L2 cache. It
is interconnected through a 8x8 Mesh NoC of four Quadrants (NUMA nodes),
with 64 CPU@2.4 GHz cores, 2 cores per Request Node (RNF), for a total of 16
per Quadrant, 1 MiB System Level Cache (SLC) slices, 2 slices per Home Node
(HNF), and 32 HBM2@1.6 GHz channels, (8 per Quadrant, with a combined
bandwidth of 307.2 GB/s), as shown in Figure 1(a). The NoC@2.0 GHz follows
the AMBA-CHI protocol and has four Virtual Networks (VNETs), and one link
per VNET, with 64B link width and one packet per cycle data rate. For DDR4
memories, we reuse the models already available in gem5, with the latency of
links connecting two Quadrants (inter-NUMA links) set to 3 cycles. In the two
following subsections, we present how the reference system can be modeled in
two simulators: gem5 and VPSim. This approach of combining the two simula-
tion platforms, as presented in [27] has been extended to model NUMA-related
aspects and assess the concrete impact on both HW and SW performance In-
deed, the gem5 simulator models computer system architecture at cycle-level
accuracy, but at the cost of increased simulation time. While VPSim’s accuracy
is diminished, a trade-off exists between simulation time and supporting simu-
lation of larger systems. We demonstrate how gem5 and VPsim can be used in
a complementary manner to study co-design concerns.

3.1 Modeling NUMA topologies with gem5

We have implemented the capability of modeling distinct NUMA node topologies
with the gem5 simulator [13]. A definite NUMA topology can be defined by:

– Labeling each CPU and memory controller with a distinct NUMA identifier,

– Defining groups of SLCs (ARM System Cache Groups [2]) assigned to specific
memory controllers.

Inter-node communication latencies when traversing NUMA boundaries can be
modeled by adjusting the latency of cross-NUMA links (links connecting two
Mesh routers that belong to adjacent Quadrants). Experimental results from
this GPP are shown in Section 4.



Q2 Q3

Q0 Q1

RNF HNF SNF MEM (HBM2)
Links Between Quadrants

((a)) gem5: 4 Quadrants/NUMA nodes
GPP

Q2 Q3

Q0 Q1

Links Between Quadrants
RNF HNF SNF MEM (DDR4)

((b)) VPSim: 4 Quadrants/NUMA nodes
GPP

Fig. 1: NoC Designs

3.2 NUMA modeling in VPSim

We brought NUMA support to VPSim environment, which involved modifying
several parts of the tool. The custom QEMU machine used to support cores
simulation in VPSim [9] has been extended to expose NUMA systems to the
guest Operating System (OS). Depending on the components of the modeled
platform, VPSim automatically generates device tree files. The generator has
been updated for correct transcription of CPUs and memory address spaces
bindings to NUMA nodes. As for the memory hierarchy modeled in SystemC,
most work was naturally ported to VPSim NoC performance model [14]. This
model has a whole view of the connected components and, as such, centralizes all
information about NUMA configuration. It was extended with NUMA support
to enable redirecting requests to the right components, such as SLCs, and DDR
memory controllers. Moreover, cache group functionality was also implemented
in VPSim. It can be turned on or off when NUMA support is activated. For
benchmarking purposes, counters were added to quantify inter-node communi-
cations. For each couple (source, destination) of NUMA nodes, the number of
packets crossing from source to destination is monitored. We also keep track of
Inter-node memory accesses, i.e. DDR controllers’ accesses coming from other
NUMA nodes than the one to which the DDR controller is bound.

4 Evaluation

In this section, we evaluate the impact on the network performance of differ-
ent NUMA node and SLC group assignments. Consider the NoC divided into
4 quadrants as shown in Figure 1(a). A single NUMA node topology defines a



single NUMA node containing all quadrants, with all CPU and memory con-
trollers labeled with the same NUMA id, and SLC slices interleaved over the
available memory controllers. A 4-NUMA node topology defines each quadrant
as a local NUMA node, with each CPU and memory controller labeled accord-
ing to which quadrant it belongs to. Furthermore, all SLCs within a quadrant
are assigned the memory address range corresponding to the memory controllers
in the quadrant. This section uses the STREAM-TRIAD benchmark [15] (with
SVE vectorization, and parallelized using OpenMP directives) to characterize
the performance of different configurations. The selected problem size is 10 mil-
lion double-precision elements per array, i.e. 228.88 MiB for all three arrays.

4.1 Performance for different NoC bandwidths

Here we discuss the effect on memory bandwidth and network performance of
distinct NUMA topologies with varying inter-router NoC bandwidth. We restrict
our simulations to the lower 2-Quadrant subset of the 4-Quadrant NoC, either
as a single NUMA node or 2-NUMA node topology, with each quadrant defin-
ing a local NUMA node as described before. We label these configurations N1
and N2, respectively. We consider two distinct NoC configurations: one with a
single link carrying all VNET packets, labeled L0, and one with 2 links for each
VNET (for 8 links in total), labeled L2. We run a 32-thread STREAM-TRIAD
benchmark over all available CPUs to quantify the effect of different NoC and
NUMA configurations on memory bandwidth and network performance.

N1-L0 N2-L0 N1-L2 N2-L2
NUMA-Link config

0

10

20

30

40

50

60

70

80

HB
M

2 
ba

nd
wi

dt
h 

ut
il.

(%
 o

f p
ea

k)

26.25

47.78

72.02 71.64

((a)) HBM2 Bandwidth uti-
lization

0 2 4 6 8
Network Hops

0.00

0.05

0.10

0.15

0.20

0.25

No
rm

al
ize

d 
Ev

en
ts

DAT N1
DAT N2

REQ N1
REQ N2

((b)) Network Hops

REQ SNP RESP DAT
AMBA-CHI VNET

0

10

20

30

40

50

60

No
C 

Ne
tw

or
k 

la
te

nc
y 

(c
yc

le
s)

20
.5

12
.3 14

.5

51
.8

17
.9

12
.8

12
.0

36
.9

17
.0

11
.7

11
.2 12

.5
10

.7
10

.6
8.8 9.8

N1-L0
N2-L0
N1-L2
N2-L2

((c)) Network latency per
VNET

Fig. 2: STREAM-TRIAD - (1 vs 2 NUMA nodes, 1 vs 8 links)

The HBM2 memory bandwidth utilization for the 4 possible configurations
is shown in Figure 2(a). For the single-link configurations L0, NUMA partition-
ing causes a great improvement in available memory bandwidth. For the 8-link
configurations L2, NUMA partitioning does not seem to have an effect on the
already saturated memory bandwidth utilization. Figure 2(b) shows the effect



on Data (DAT) and Request (REQ) VNETs network hop distribution for the N1
and N2 NUMA topologies. NUMA partitioning clearly shifts the hop distribu-
tion to the left since the network traffic becomes mostly constrained to its local
quadrant. The effects of this traffic reduction can also be seen on the average
network packet latency, shown in Figure 2(c). The average network packet la-
tency TN is defined as TN ≡ Ta−Ti, where Ti is the time the packet was injected
in the network, and Ta is the time the packet arrived at its destination node. For
all protocol VNETs, the partitioned NUMA topology N2 always has a reduced
network latency compared to the single-node configuration N1, the effect being
greater for the lower bandwidth configurations.

4.2 STREAM TRIAD on a 4-NUMA node GPP

We now model a complete 4-NUMA nodes GPP, with 64 cores, 64 SLC slices,
and 32 HBM2 controllers, as depicted in Figure 1(a). We run STREAM-TRIAD
with 16 threads, always bound on Node-0 (Q0 in Figure 1(a)), and with the
allocated memory attached on a different NUMA node each time. We examine
three different cases. Initially, the allocated memory buffer is placed on Node-0
(the same node as the OpenMP threads), then on Node-1 (Q1), and finally on
Node-3 (Q3), which is the furthest away from Node-0. By allocating the buffer
on multiple NUMA nodes, we can measure the impact of memory locality on
memory bandwidth and NoC latency.

Node-0 Node-1 Node-3
NUMA Node

0

10

20

30

40

50

60

70

80

HB
M

2 
ba

nd
wi

dt
h 

ut
il.

(%
 o

f p
ea

k)

72.69

36.24
31.71

((a)) HBM2 bandwidth utilization

REQ SNP RESP DAT
AMBA-CHI VNET

100

101

102

103

No
C 

Qu
eu

ei
ng

 la
te

nc
y 

(c
yc

le
s)

8.1

3.4

1.4 1.2

22
1.1

7.7

1.6
1.2

25
8.2

6.4

1.4

3.3

Node-0
Node-1
Node-3

((b)) NoC Queueing latency per VNET

Fig. 3: STREAM-TRIAD, 4 NUMA nodes

As shown in Figure 3(a), 16 OpenMP STREAM-TRIAD threads can utilize
72.69% of the peak HBM2 bandwidth when the buffer is placed in Node-0.
This utilization drops down to 36%, when the buffer is moved to Node-1 and



only 32% when the buffer is placed on Node-3. Regarding the NoC performance
concerning the allocated buffer location, we examine the NoC Queueing latency
for all four AMBA-CHI VNETs (Request, Snoop, Response, Data), as shown in
Figure 3(b). When the buffer is placed on NUMA Node-0, the average Request
(REQ) VNET Queueing latency is about 8 cycles. When the buffer is moved
to Node-1 and Node-3, the REQ VNET Queueing latency is increased to 221
cycles and 258 cycles, respectively, signifying a more congested NoC. For the
remaining three VNETs, the NoC Queueing latency increase is insignificant.
From these two graphs, we can clearly see the impact of data locality on the
memory bandwidth performance and the NoC latency increase, for a specific
VNET. The simulation tools allow us to have a clear view of the underlying sub-
systems performance and limitations. This information is then communicated to
the hardware architects in order to improve their models accordingly.

4.3 Application performance characterization using VPSim

In the following, we demonstrate the ability of high-level virtual prototyping
tools, such as VPSim, in analyzing the impact of enabling features, such as
NUMA support and SLCs grouping, on memory hierarchy performance. The
objective is to help software developers make aware choices at early stages of the
hardware design. Thanks to the fast simulation speed of VPSim, we consider a
large set of HPC-oriented benchmarks consisting of multi-threaded applications
from the PARSEC [3] and SPLASH-2 [25] suites as well as two OpenMP appli-
cations: STREAM and WaLBerla’s UniformGrid benchmark [6]. For OpenMP
applications, OpenMP directives were employed to bind 64 threads on a one-to-
one basis to the 64 cores. Experiments are run under the default NUMA local
memory allocation policy (no numactl directives), known as first-touch policy,
i.e. threads will preferably allocate memory in their own NUMA node’s memory.

While awaiting for the integration of a new HBM model into VPSim, we
simulated the same setup as previously, except that instead of HBM stacks,
we considered 4 DDR memory controllers (one per Quadrant) as depicted in
Figure 1(b). Since the emphasis is on analyzing data locality and accesses across
NUMA nodes, replacing HBM with DDR should not alter the observations and
the outcomes exposed in this section. Three configurations were compared. In
Configuration 1, NUMA support is disabled, and the single memory address
space is interleaved among all SLCs and DDR memory controllers. Configuration
2 enables NUMA support. Four homogeneous NUMA nodes are considered. The
physical address space is then segmented equally into 4 contiguous memory
regions. Cache groups functionality is also enabled; i.e. each memory region is
interleaved among the SLC slices of its NUMA node. Interleaving at DDR level
is not applicable since each node has only one DDR controller. Configuration 3
resembles Configuration 2 except SLCs are not grouped. Thus, the whole physical
address space is interleaved among all SLC slices, similar to Configuration 1.

Figure 4(a) depicts the impact of our configurations on the average distance
of NoC packets. The behavior is consistent no matter the tested application.
When NUMA support is enabled, local allocation policy reduces up to 32% of



0

1

2

3

4

5

6 Config. 1 Config. 2 Config. 3

((a)) Average Distance of Packets (hops)

0%

5%

10%

15%

20%

25%

30% Config. 1 Config. 2 Config. 3

((b)) SLC Hit ratio (%)

Fig. 4: NoC Designs

the average distance of packets under the condition that SLCs are also grouped
per NUMA node (Configuration 2). Otherwise, if SLC cache groups functionality
is disabled (Configuration 3), this benefit is lost and we measure comparable or
slightly higher values than those of Configuration 1, despite having DDR con-
trollers in NUMA mode. Figure 5 shows the impact of the three configurations on

0%
20%
40%
60%
80%

100%
120%
140%

Barnes Fmm Freqmine Ocean_cp Radiosity Stream Walberla

NUMA 0 NUMA 1 NUMA 2 NUMA 3

Fig. 5: DDR Memory Activity (Reads and Writes). Values are normalized to the
result of Configuration 1.

DDR memory activity. This includes read and write operations. For each applica-
tion, values are normalized to Configuration 1 result. No matter the application,
the activity is well distributed among the four DDR controllers when interleav-
ing is at work (Configuration 1). As such, interleaving offers an easy way to
fully exploit the available memory bandwidth. On the other hand, when NUMA
is enabled, unless data allocation is well distributed between threads (such as
STREAM and WaLBerla), multi-threaded applications can hardly exploit DDR
controllers equally. Indeed, NUMA might result in an unbalanced usage of the
memory address space. For three out of the seven benchmarks (Barnes, Fmm,
Radiosity), more than 95% of accesses are concentrated on one memory region,



the one bound to the NUMA node running the main thread. Concentrating load
on a single DDR controller instead of 4 increases the average access latency.

These poorly behaving benchmarks are known for optimal data distribution
being challenging [25]. By clustering threads into separate nodes, a NUMA ar-
chitecture make it even more noticeable. In order to draw more performance
out of these benchmarks, we may be tempted to have recourse to software en-
forced interleaving using numactl --interleave=all directive. Eventually, this
will balance the usage of DDR memory controllers, and we will observe similar
performance to Configuration 1. However, spreading memory accesses across
controllers also negates the benefit of NUMA locality, as three out of four mem-
ory accesses will cross NUMA nodes boundaries. A better solution would be to
create NUMA-aware versions of such benchmarks.

In a different register, we observe for some applications up to 31% of increase
in DDR memory activity when both NUMA and SLC cache groups are enabled
(Configuration 2). More than 69% and up to 96% of this increase is attributed
to additional read operations, which indicates a lower caching efficiency at the
SLC level. This is confirmed by analyzing SLC hit ratio as shown in Figure 4(b).

There is a clear correlation between the decrease in hit ratio and the increase
in DDR memory activity. Grouping SLCs has the effect of reducing the total
cache size available per NUMA node (16MB against 64MB), which results in
lower hit rates (up to 39%). This behavior is more pronounced for unbalanced
applications with memory activity concentrated in fewer NUMA nodes. Data
are evicted more frequently due to cache line replacements, forcing the system
to read them again from DDR memory the next time they are accessed.

According to these observations, applications can be classified depending on
whether they benefit from NUMA or not. Embarrassingly parallel applications
such as STREAM, as well as quite balanced applications that are not affected
by the reduced size of cache groups, such as Freqmine and WaLBerla, benefit
most from NUMA locality. Thus, these applications are better executed using
Configuration 2. Highly unbalanced applications, such as Barnes and Fmm, for
which the burden of memory accesses is almost fully transferred to one NUMA
node, see their performance decreasing because of reduced available bandwidth
per NUMA combined with an increase in DDR memory accesses due to higher
miss rate compared to the non-NUMA configuration. Such applications are bet-
ter executed on Configuration 1 or by enforcing DDR memory interleave using
numactl --interleave=all directive. Overall, if NUMA support is enabled,
we advise against disabling cache group functionality (Configuration 3). Even
though turning off this functionality restores the SLC hit ratio and reduces DDR
memory activity, it nullifies the effect of local allocation on the packet’s average
distance without being able to restore a balanced usage of DDR controllers.

4.4 Memory Page Migration in NUMA systems

Since automatic kernel-level management is potentially unaware of memory char-
acteristics, users have to manually managing thread and memory placement us-
ing utilities like libnuma, numactl, OpenMP 5.0 Memory Allocators or higher-



1.0%

1.5%

2.0%

2.5%

3.0%

A6
4F

X
B

an
dw

id
th

 [%
pe

ak
]

near
memcpy move_pages stream-copy

1.0%

1.5%

2.0%

2.5%

3.0%
far

0.5%

1.0%

1.5%

2.0%

2.5%

Xe
on

Pl
at

in
um

81
60

B
an

dw
id

th
 [%

pe
ak

]

2.0%

4.0%

6.0%

Ku
np

en
g9

20
B

an
dw

id
th

 [%
pe

ak
]

2.0%

4.0%

6.0%

256 512
1024

2048
4096

8192
16384

32768
65536

131072

Transferred pages [#]

1.0%

2.0%

3.0%

4.0%

5.0%

Po
w

er
98

33
5

G
TH

B
an

dw
id

th
 [%

pe
ak

]

256 512
1024

2048
4096

8192
16384

32768
65536

131072

Transferred pages [#]

1.0%

2.0%

3.0%

4.0%

5.0%

No "far" NUMA Node

Fig. 6: Percentage of peak interconnect bandwidth utilized on 4 NUMA-enabled
platforms when transferring data from one NUMA node to another.

level wrappers like memkind [4]. While these approaches work if the optimal
placement of computational elements is known in advance, they are inapplica-
ble when data movement between NUMA domains is required. To outline the
pitfalls of these approaches and the relevance of appropriate NUMA placement,
we benchmark several NUMA platforms on a workload that involves moving
pages from one domain to another. The benchmark tests three methods for
transferring data: libc’s memcpy, the move pages syscall, and implementation
of stream-copy using vector intrinsics. All the benchmarks are run on a sin-
gle core, transferring a range between 28 and 217 pages of 64 KiB. Figure 6
displays the percentage of peak theoretical interconnect bandwidth achieved in
moving pages from one NUMA node to another in 4 HPC systems. Three of
those systems (A64FX, Kunpeng920, Power98335-GTH) present several NUMA
nodes at different node distances. In this setting, we refer to pairs of nodes
with the lowest nonzero distance as near and, conversely, as far if they are the
furthest apart. On the other hand, the Xeon Platinum 8160 platform we test
has just two NUMA nodes. Hence it has no far pair of nodes. Userspace and
kernel space management approach incur high overhead, stemming from either
(i) having to resort to syscalls (move pages) or (ii) being limited by the num-
ber of cores that perform the transfer (memcpy). Consequently, current memory



management methods cannot perform effective data transfer between NUMA
nodes, with data needing to pass through the core being the limiting factor.

5 Conclusion and perspectives

In this paper, we study the performance potential and data placement impli-
cations of NUMA in HPC systems. We model a NUMA system architecture
with processors based on the ARMv8 Neoverse V1 Reference Design, using the
gem5 and VPSim simulation platforms. We then present several case studies
to evaluate the performance impact of different NUMA node and SLC group
assignments, as well as NoC configuration settings, on microbenchmarks and
applications. These case studies, highlight design trade-offs, and serve as input
for a co-design process involving HPC SoC architects and system integrators.

The innovation of this paper in regard to gem5, is the modeling of large
ARM systems (64 cores), with NUMA capability (NUMA capability was added
in gem5 source code in February 2022) and Full System simulation (Linux OS and
complete software stack). Exploration of such large systems modeled in gem5,
is hard to find in existing literature. Usually, such large systems (16 or more
CPU cores) are based on trace-driven simulations, whereas we are making use
of a very detailed cycle accurate Out of Order (O3) Processor model, with SVE
capability. With a complete GPP chip modeled, our work uncovers performance
effects at the NoC level that are less pronounced with smaller configurations.

While we can rely on already existing hardware to do some of the observations
described in this paper, we demonstrated the ability of virtual prototyping tools
to study the impact of varying design choices. Besides, bringing NUMA capabil-
ity into these tools is a key milestone towards the exploration of next generation
platforms with more advanced and complex memory accesses schemes.

Finally, we envision hardware architects to use both VPSim and gem5 to-
gether within the context of co-designing a new CPU. On one side, the rapid
simulation capabilities and high scalability of VPSim allows for swift exploratory
studies, enabling architects to quickly improve upon their initial design and vali-
date the tooling (i.e., operating systems, drivers and software) that will be avail-
able on the final CPU. On the other side, once the architectural structure reaches
the final stages, the accuracy of gem5 becomes paramount in determining perfor-
mance metrics and assessing if the design meets performance expectations. Using
the two simulators jointly overcomes the shortcomings of both, while providing
the accuracy and flexibility required in simulating modern NUMA systems.

Acknowledgment

This research has received funding from the European High Performance Com-
puting Joint Undertaking (JU) under Framework Partnership Agreement No
800928 (European Processor Initiative) and Specific Grant Agreement No 101036168
(EPI SGA2). The JU receives support from the European Union’s Horizon 2020
research and innovation programme and from Croatia, France, Germany, Greece,



Italy, Netherlands, Portugal, Spain, Sweden, and Switzerland. The EPI-SGA2
project, PCI2022-132935 is also co-funded by MCIN/AEI /10.13039/501100011033
and by the UE NextGenerationEU/PRTR.

References

1. ACPI HMAT. https://uefi.org/htmlspecs/ACPI_Spec_6_4_html/05_ACPI_

Software_Programming_Model/ACPI_Software_Programming_Model.html.
2. ARM. Neoverse CMN-650 Technical Reference manual. https://developer.arm.

com/documentation/101481/0200?lang=en, 2023.
3. C. Bienia, S. Kumar, J. Pal Singh, and K. Li. The parsec benchmark suite: Charac-

terization and architectural implications. In Proceedings of the 17th International
Conference on Parallel Architectures and Compilation Techniques, page 72–81,
2008.

4. Christopher Cantalupo, Vishwanath Venkatesan, Jeff Hammond, Krzysztof
Czurlyo, and Simon David Hammond. memkind: An extensible heap memory
manager for heterogeneous memory platforms and mixed memory policies. Tech-
nical report, Sandia National Lab.(SNL-NM), Albuquerque, NM (United States),
2015.

5. Amir Charif, Gabriel Busnot, Rania Mameesh, Tanguy Sassolas, and Nicolas Ven-
troux. Fast Virtual Prototyping for Embedded Computing Systems Design and
Exploration. In Proceedings of the Rapid Simulation and Performance Evaluation:
Methods and Tools, RAPIDO ’19, pages 1–8. Association for Computing Machin-
ery, January 2019.

6. C. Feichtinger, S. Donath, H. Köstler, J. Götz, and U. Rüde. Walberla: Hpc soft-
ware design for computational engineering simulations. Journal of Computational
Science, 2(2):105–112, 2011.

7. Per Hammarlund, Alberto J Martinez, Atiq A Bajwa, David L Hill, Erik Hallnor,
Hong Jiang, Martin Dixon, Michael Derr, Mikal Hunsaker, Rajesh Kumar, et al.
Haswell: The fourth-generation intel core processor. IEEE micro, 34(2):6–20, 2014.

8. Johannes Hofmann, Dietmar Fey, Jan Eitzinger, Georg Hager, and Gerhard
Wellein. Analysis of intel2̆019s haswell microarchitecture using the ecm model
and microbenchmarks. In Architecture of Computing Systems–ARCS 2016: 29th
International Conference, Nuremberg, Germany, April 4–7, 2016, Proceedings 29,
pages 210–222. Springer, 2016.

9. Fatma Jebali, Oumaima Matoussi, Arief Wicaksana, Amir Charif, and Lilia Za-
ourar. Decoupling processor and memory hierarchy simulators for efficient design
space exploration. In System Engineering for constrained embedded systems, pages
47–52. 2022.

10. Chetana N Keltcher, Kevin J McGrath, Ardsher Ahmed, and Pat Conway. The
amd opteron processor for multiprocessor servers. IEEE Micro, 23(2):66–76, 2003.

11. Ruben Laso, Francisco F Rivera, and José Carlos Cabaleiro. Influence of architec-
tural features of the snc-4 mode of the intel xeon phi knl on matrix multiplication.
In Computational Science–ICCS 2019: 19th International Conference, Faro, Por-
tugal, June 12–14, 2019, Proceedings, Part V 19, pages 483–490. Springer, 2019.

12. James Laudon and Daniel Lenoski. The sgi origin: A ccnuma highly scalable server.
ACM SIGARCH Computer Architecture News, 25(2):241–251, 1997.

13. Jason Lowe-Power, Abdul Mutaal Ahmad, Ayaz Akram, Mohammad Alian, Rico
Amslinger, Matteo Andreozzi, Adrià Armejach, Nils Asmussen, Brad Beckmann,

https://uefi.org/htmlspecs/ACPI_Spec_6_4_html/05_ACPI_Software_Programming_Model/ACPI_Software_Programming_Model.html
https://uefi.org/htmlspecs/ACPI_Spec_6_4_html/05_ACPI_Software_Programming_Model/ACPI_Software_Programming_Model.html
https://developer.arm.com/documentation/101481/0200?lang=en
https://developer.arm.com/documentation/101481/0200?lang=en


Srikant Bharadwaj, et al. The gem5 simulator: Version 20.0+. arXiv preprint
arXiv:2007.03152, 2020.

14. Oumaima Matoussi. Noc performance model for efficient network latency esti-
mation. In 2021 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pages 994–999. IEEE, 2021.

15. JD McCalpin. Memory bandwidth and machine balance in high performance com-
puters, 1995.

16. Daniel Molka, Daniel Hackenberg, Robert Schöne, and Wolfgang E Nagel. Cache
coherence protocol and memory performance of the intel haswell-ep architecture. In
2015 44th International Conference on Parallel Processing, pages 739–748. IEEE,
2015.

17. S Park, H Kim, KS Kim, J So, J Ahn, WJ Lee, D Kim, YJ Kim, J Seok, JG Lee,
et al. Scaling of memory performance and capacity with cxl memory expander. In
2022 IEEE Hot Chips 34 Symposium (HCS), pages 1–27. IEEE Computer Society,
2022.

18. Mitsuhisa Sato, Yutaka Ishikawa, Hirofumi Tomita, Yuetsu Kodama, Tetsuya Oda-
jima, Miwako Tsuji, Hisashi Yashiro, Masaki Aoki, Naoyuki Shida, Ikuo Miyoshi,
et al. Co-design for A64FX manycore processor and” fugaku”. In SC20: Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis, pages 1–15. IEEE, 2020.

19. Ronak Singhal. Inside intel next generation nehalem microarchitecture. In Hot
Chips, volume 20, page 15, 2008.

20. Avinash Sodani. Knights landing (knl): 2nd generation intel® xeon phi processor.
In 2015 IEEE Hot Chips 27 Symposium (HCS), pages 1–24. IEEE, 2015.

21. Avinash Sodani, Roger Gramunt, Jesus Corbal, Ho-Seop Kim, Krishna Vinod, Sun-
daram Chinthamani, Steven Hutsell, Rajat Agarwal, and Yen-Chen Liu. Knights
landing: Second-generation intel xeon phi product. Ieee micro, 36(2):34–46, 2016.

22. Nigel Stephens, Stuart Biles, Matthias Boettcher, Jacob Eapen, Mbou Eyole, Gia-
como Gabrielli, Matt Horsnell, Grigorios Magklis, Alejandro Martinez, Nathanael
Premillieu, et al. The ARM scalable vector extension. IEEE micro, 37(2):26–39,
2017.

23. Radhika Thekkath, Amit Pal Singh, Jaswinder Pal Singh, Susan John, and John
Hennessy. An evaluation of a commercial cc-numa architecture-the convex exem-
plar spp1200. In Proceedings 11th International Parallel Processing Symposium,
pages 8–17. IEEE, 1997.

24. Sean Williams, Latchesar Ionkov, and Michael Lang. Numa distance for heteroge-
neous memory. In Proceedings of the Workshop on Memory Centric Programming
for HPC, pages 30–34, 2017.

25. S. Cameron Woo, M. Ohara, E. Torrie, J. Pal Singh, and A. Gupta. The splash-2
programs: Characterization and methodological considerations. SIGARCH Com-
put. Archit. News, 23(2):24–36, may 1995.

26. Lingfeng Xiang, Xingsheng Zhao, Jia Rao, Song Jiang, and Hong Jiang. Char-
acterizing the performance of intel optane persistent memory: A close look at its
on-dimm buffering. In Proceedings of the Seventeenth European Conference on
Computer Systems, pages 488–505, 2022.

27. Lilia Zaourar, Mohamed Benazouz, Ayoub Mouhagir, Fatma Jebali, Tanguy Sasso-
las, Jean-Christophe Weill, Carlos Falquez, Nam Ho, Dirk Pleiter, Antoni Portero,
et al. Multilevel simulation-based co-design of next generation hpc microproces-
sors. In 2021 International Workshop on Performance Modeling, Benchmarking
and Simulation of High Performance Computer Systems (PMBS), pages 18–29.
IEEE, 2021.


	Case Studies on the Impact and Challenges of Heterogeneous NUMA Architectures for HPC

