001026293 001__ 1026293
001026293 005__ 20250204113854.0
001026293 0247_ $$2doi$$a10.1140/epjb/s10051-024-00680-w
001026293 0247_ $$2ISSN$$a1434-6028
001026293 0247_ $$2ISSN$$a1434-6036
001026293 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-03364
001026293 0247_ $$2WOS$$aWOS:001204807200002
001026293 037__ $$aFZJ-2024-03364
001026293 082__ $$a530
001026293 1001_ $$0P:(DE-Juel1)130885$$aPersson, Bo$$b0$$eCorresponding author$$ufzj
001026293 245__ $$aRole of humidity and surface roughness on direct wafer bonding
001026293 260__ $$aHeidelberg$$bSpringer$$c2024
001026293 3367_ $$2DRIVER$$aarticle
001026293 3367_ $$2DataCite$$aOutput Types/Journal article
001026293 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1715747481_21035
001026293 3367_ $$2BibTeX$$aARTICLE
001026293 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001026293 3367_ $$00$$2EndNote$$aJournal Article
001026293 520__ $$aBodies made from elastically stiff material usually bind very weakly unless the surfaces are flat and extremely smooth. In direct wafer bonding flat surfaces bind by capillary bridges and by the van der Waals interaction, which act between all solid objects. Here we study the dependency of the work of adhesion on the humidity and surface roughness in hydrophilic direct wafer bonding. We show that the long-wavelength roughness (usually denoted waviness) has a negligible influence on the strength of wafer bonding (the work of adhesion) from the menisci that form from capillary condensation of water vapor.
001026293 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001026293 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001026293 7001_ $$0P:(DE-HGF)0$$aMate, C. Mathew$$b1
001026293 773__ $$0PERI:(DE-600)1459068-2$$a10.1140/epjb/s10051-024-00680-w$$gVol. 97, no. 4, p. 46$$n4$$p46$$tThe European physical journal / B$$v97$$x1434-6028$$y2024
001026293 8564_ $$uhttps://juser.fz-juelich.de/record/1026293/files/s10051-024-00680-w.pdf$$yOpenAccess
001026293 8564_ $$uhttps://juser.fz-juelich.de/record/1026293/files/s10051-024-00680-w.gif?subformat=icon$$xicon$$yOpenAccess
001026293 8564_ $$uhttps://juser.fz-juelich.de/record/1026293/files/s10051-024-00680-w.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001026293 8564_ $$uhttps://juser.fz-juelich.de/record/1026293/files/s10051-024-00680-w.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001026293 8564_ $$uhttps://juser.fz-juelich.de/record/1026293/files/s10051-024-00680-w.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001026293 8767_ $$d2024-09-11$$eHybrid-OA$$jDEAL
001026293 909CO $$ooai:juser.fz-juelich.de:1026293$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
001026293 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130885$$aForschungszentrum Jülich$$b0$$kFZJ
001026293 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA$$b1
001026293 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001026293 9141_ $$y2024
001026293 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001026293 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001026293 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001026293 915pc $$0PC:(DE-HGF)0113$$2APC$$aDEAL: Springer Nature 2020
001026293 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-21
001026293 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001026293 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-21
001026293 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2023-10-21$$wger
001026293 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001026293 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEUR PHYS J B : 2022$$d2024-12-16
001026293 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-16
001026293 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-16
001026293 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-16
001026293 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-16
001026293 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-16
001026293 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-16
001026293 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-16
001026293 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-16
001026293 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
001026293 9801_ $$aFullTexts
001026293 980__ $$ajournal
001026293 980__ $$aVDB
001026293 980__ $$aUNRESTRICTED
001026293 980__ $$aI:(DE-Juel1)PGI-1-20110106
001026293 980__ $$aAPC