
Adapting Agricultural Virtual Environments in

Game Engines to Improve HPC Accessibility

Dirk Norbert Baker1,2[0000−0003−1542−1062]⋆, Felix Bauer3[0000−0002−7441−9897],
Andrea Schnepf3[0000−0003−2203−4466], Hanno Scharr4[0000−0002−8555−6416],

Morris Riedel1,2[0000−0003−1810−9330], Jens Henrik Göbbert2[0000−0002−3807−6137], and
Ebba Hvannberg1[0000−0002−8041−5542]

1 School of Engineering and Natural Sciences, University of Iceland, Iceland
2 Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH, Germany

3 Institute of Bio- and Geosciences 3: Agrosphere, Forschungszentrum Jülich GmbH,
Germany

4 Institute for Advanced Simulation 8: Data Analytics and Machine Learning,
Forschungszentrum Jülich GmbH, Germany

Abstract. E-infrastructures deliver basic supercomputing and storage
capabilities but can bene�t from innovative higher-level services that
enable use-cases in critical domains, such as environmental and agricul-
tural science. This work describes methods to distribute virtual scenes to
the GPU nodes of a modular supercomputer for data generation. High
information density virtual scenes, containing > 100k geometries, typ-
ically cannot be rendered in real-time without techniques that change
the information content, such as level-of-detail or culling approaches.
Our work enables the concurrent and partitioned coupling to the image
analysis in such a way that the data generation is dynamic and can be
allocated to GPU nodes on demand, resulting in the possibility of moving
through a continuous virtual scene rendered on multiple nodes. Within
agricultural data analysis, the approach is especially impactful as virtual
�elds contain many individual geometries that coexist in one continuous
system. Our work facilitates the generation of high-quality image data
sets which has the potential to solve the challenge of scarcity of well-
annotated data in agricultural science. We use real-time communication
standards to couple the data production with the image analysis train-
ing. We demonstrate how the use-case rendering impacts e�ective use of
the compute nodes and furthermore develop techniques to distribute the
workload to improve the data production.

Keywords: Visualization · Computing Services · FSPM · Computer
Vision

1 Introduction

Analyzing camera images to extract agricultural plant information is a major
bottleneck and one of the most challenging tasks in plant science [1,2,3]. Syn-

⋆ Corresponding Author: d.baker@fz-juelich.de

https://orcid.org/0000-0003-1542-1062
https://orcid.org/0000-0002-7441-9897
https://orcid.org/0000-0003-2203-4466
https://orcid.org/0000-0002-8555-6416
https://orcid.org/0000-0003-1810-9330
https://orcid.org/0000-0002-3807-6137
https://orcid.org/0000-0002-8041-5542
mailto:d.baker@fz-juelich.de

2 D. Baker et al.

thetic data generation is a strong contender to combat the scarcity of high-
quality annotated data [4,5], especially with the tools available through modern
graphics engines [6,7]. A scalable plant image generation pipeline could improve
critical tasks such as training of statistical or Deep Learning (DL) models [8,9].
However, for virtual agricultural data to be useful, it must span realistic scales
and contain functional information, such as root water uptake or photosynthe-
sis. In this work we improve the scalability of rendering virtual environments in
graphics engines leveraging current e-infrastructure capabilities, thus enabling a
data-scarce domain to make more e�ective use of High-Performance Computing
(HPC) resources.

Synthetic data generation is a method to model the input and output data
in conjunction to allow for larger-scale training data sampling. A virtual envi-
ronment involves the time-variant rendering of a scene, including objects, light-
ing, and movement. We refer to the simulation of a virtual environment as the
computation of processes such as water �ow or photosynthesis, which depend
on plant structure. Synthetic data production for plant image analysis can be
based on plant simulation models, though it might not depend on it, or not use
a simulated plant model at all. Synthetic data provides a rigorous assessment
of error margins as well as a scalable pipeline [6], as the employment of virtual
ground-truth provides a de�nite error value that has no hidden e�ects, such as
human labeling error.

Synthetic data can be used to pre-train DL-models to increase robustness
towards new data. Scalability and robustness are valuable for decision making in
agriculture, where multi-step algorithms impact assessments and actions [10,2].
One advantage of synthetic data is that it can be used to provide a baseline
for evaluation [11], while it also provides high-quality annotated data [7]. To
accommodate the need for state-of-the-art rendering pipelines, we are using the
Unreal Engine (UE) as rendering framework, coupling it with plant simulation
models to create virtual environments. To enable the coupling and concurrent
computation of simulation model, virtual world, as well as DL framework, we
are employing Synavis [12]. We developed Synavis speci�cally for the coupling
of virtual environments with DL and simulation models.

A key aspect of virtual �eld simulation is the use of Functional-Structural
Plant Models (FSPMs), such as CPlantBox [13,14]. FSPMs are statistical de-
scriptions of plant traits (phenotypes) [13] and are calibrated using measure-
ments and statistical optimization [14]. Because FSPM outputs are diverse
[5,15,12], the generated scene con�guration provides more diverse image data.
CPlantBox in particular is useful since it was stochastically evaluated [16] and
has proven applicability in replicating �eld experiments [17]. The functional sim-
ulation of plant systems is complex and requires coupling between all connecting
systems to form a fully capable simulation model [14].

Modern agricultural �elds contain tens of thousands of plants, optimizing for
high density and yield. A digitized version of realistic crop �elds requires resource
management as well as an adaptive pipeline to suit di�erent use-cases that have
con�icting requirements. To allow for increased scalability, we have developed

Adapting Virtual Environments in Game Engines to HPC 3

techniques that facilitate the distribution of large-scale generation of virtual
scenes of digital crop �elds on to multiple GPU nodes of an HPC system. Our
technique requires little user-based alteration to the virtual environment created
in UE. The need for both scalable virtual �eld simulation as well as cohesive data
generation is met through the distribution of FSPMs across graphics engine
instances. We enable comprehensive work�ows to generate synthetic data on
HPC systems. This paper provides relevant insight into previous work in all
supporting domains and techniques in Sec. 2, before describing speci�c HPC
scenarios to support plant science domains in Sec. 3. We provide a description of
our experiments in Sec. 3.4 before we describe the measurement results in Sec. 4
and discuss them in Sec. 5.

2 Related Work

In context of our use-cases, there are key aspects that are embedded in partly
disjunct domains that need to work together to form a fully formed pipeline.
This section highlights important work in all parts of the pipeline, starting with
synthetic data generation in UE. A well-known framework for a data generation
framework with UE was developed by Qiu et al. [7], called UnrealCV, which
uses �lters and image-based commands to provide the ground-truth for these
�lters, such as object contours or scene depth. It uses a direct Python binding
of UE to allow for the expedient generation of data sets. Using UnrealCV, both
Zhang et al. [18] and McCormac et al. [19] produced e�ective pipelines for RGB
camera depth estimation. Especially Zhang et al. highlight the interplay between
algorithm performance and UE scene generation, showcasing that the data gen-
eration needs to be dynamically adapted for validation purposes, which would
need to have special accommodation from the e-infrastructure provider. There
are a number of DL applications1 that have a baseline evaluation or also data set
generation through UE, particularly surrounding agent-environment interaction,
like trajectory optimization by Roberts et al. [20]. The visualization of virtual
scenes to train agents has seen an overall increase in use, especially in indus-
try, as described by Nassif et al. [21]. Particularly, Bondi et al. [22] developed
a separate UE-based approach to train unmanned aerial vehicles in a controlled
setting.

From general synthetic data generation, we are now highlighting work that
focuses on generating plant synthetic data. Certain algorithms, such as leaf seg-
mentation, can be trained using data that is generated through image augmenta-
tion, as shown by Ward et al. [4], who generate top-view leaf data with semantic
segmentation. However, there are classes of problems where image-based syn-
thetic data is not su�cient. One challenge in plant science is the measurement
of small-scale features. The estimation of poses of animals is object-centered
detection of small-scale features, and Mu et al. [23] developed an approach to
use UE to generate the appropriate training data. The recent adaption of pose
estimation to plant science by Berrigan et al. [24] shows that the transposition

1 Publications based on UnrealCV can be found here

https://github.com/unrealcv/papers-with-unrealcv

4 D. Baker et al.

of certain methods to plant science depend on large-e�ort acquisitions of data
sets. To combat this, synthetic data using plant models can be used, but these
models need biological validation. Thus, Morandage et al. [17] show a use-case
for simulation model evaluation - by providing a synthetic �eld example and an-
alyzing how well, from a parameter estimation view, the FSPM CPlantBox can
describe the �eld data and how accurate the estimations are. Lobet et al. [15]
created a generation pipeline for virtual root system images, showing another
use of simulation model-based synthetic data generation. A generalized modeling
framework such as Helios [5] can encompass virtual �elds that include plants,
as well as their surface structure and reaction to light in�ux. While CPlantBox
itself is a stochastic description of the plant structure, as introduced by Zhou et
al. [13], more recent advances in the coupling of FSPMs for functional processes
developed by Giraud et al. [14] illustrate the descriptive power of these systems.

The generation of synthetic data, and the above mentioned methods, do
not make e�cient use of cutting-edge HPC resources of e-infrastructures, even
though they overlap domains that individually have seen innovation regarding
scalability. One particular approach is data-parallelism, which is the partition-
ing of a data set across nodes. A visualization service-based example of data
parallelism has been developed by Aunmüller et al. [25] in their framework Vis-

tle. Data parallel approaches require rethinking some approaches to rendering,
but will yield a better e�ciency of using Graphics Processing Unit (GPU) nodes.
Data parallelism is expedient for some visualization techniques, such as isosurface
visualization, but more di�cult to adapt to others. For example, Larsen et al.
[26] showcase a raytracing approach that is compatible with the paradigm of data
parallelism and have adapted this image rendering approach, which commonly
requires the whole data set, to function in parallel. Moreland et al. showcase
their design concepts for highly-threaded data-parallel visualization approaches
for the Visualization Toolkit (VTK) [27].

From an e-infrastructur point-of-view, our challenge is accommodating the
use of synthetic data generation methods using UE, which have been proven to
increase robustness, on HPC systems to allow these techniques to scale with the
increasing computational demand of DL frameworks.

3 Methods

Our aim is to improve the accessibility of HPC systems, providing plant scien-
tists with methods that enhance their data augmentation. To this end, here we
showcase two experiments (E1 & E2) focusing on the GPU performance when
generating increasing number of plants (E1) and the ability to optimize �eld
partitioning for visualization of large �elds with HPC resources (E2).

3.1 Software and Data Generation

For our analysis of large-scale �eld generation, we are using an application that
was built using UE on a user system. To couple UE with other data providers

Adapting Virtual Environments in Game Engines to HPC 5

as well as with the training framework, we are using the Synavis framework to
ease the setup of connecting the individual services. In Synavis, we can connect
the FSPM CPlantBox, which outputs geometries of its plant simulation, to the
virtual scene for rendering. Information that is generated by the simulation can
be used as reference or label data, allowing the training of a variety of scenar-
ios, especially the validation of DL-models that estimate plant traits. This data
is being rendered within UE on-demand and the coupling is not synchronous,
meaning that most changes to the virtual environment are just-in-time, which
also applies to the image generation. The coupling used in our approach is based
on real-time communication and no data is being written to disc. Most of the
setup is done in user Python scripts, as the virtual scenes can be fully dynamic.
However, it might be preferable to introduce pre-designed environments of pub-
licly available project �les, which is possible by including the Synavis plugin in
an already existing UE application.

We are using a virtual �eld setup that uses stochastically parameterized
plants [28]. These plants are discrete node-link descriptions that each have tran-
sition probabilities assigned to their structure. The leaf calibration as well as the
geometrization methods for CPlantBox have been described by Helmrich et al.
[12]. Plant surface geometry is inferred from centerline splines evaluated in �xed
resolutions. Image rendering is largely dependent on what is feasible to render in
one instance of UE. Essentially, the more plants can be rendered per instance, the
larger �eld of view can be rendered, resulting in reduced need for stitching for a
wider view. Simpli�cation of the individual geometries is done by scaling the ge-
ometry resolution. Due to simulation coupling employed in our pipeline, there is
a mix of base geometries being rendered in the scene along with geometries that
are being treated with dynamic hierarchical culling (such as by UE-Nanite [29]).
The visualization module for CPlantBox generates geometry bu�ers that can
almost immediately be written into GPU memory. UE uses procedural meshes
for this task, which have a very simple base layer of transformation and collision
support and mesh sections for geometry bu�ers. In some cases, geometry bu�ers
are �lled separately using individual organs to allow for instance-based segmen-
tation. This is especially important for leaf counting tasks, which are indicators
for leaf development [4] and thus plant growth stage.

Measurements from UE use virtual textures that act as rendering targets
for scene capture cameras. Direct scene rendering, processing image information
such as object distance or velocity (i.e. pixel movement relative to the camera),
or object property quanti�cation, use this proxy to allow for immediate dynamic
measurements. We use Synavis to handle measurement prompts, such that the
controller is able to extract arbitrary measurements. This is especially important
in cases where there is a mix of di�erent data sources, such as image data from
the renderer as well as plant data from the FSPM. HPC infrastructure allows the
scalability of the DL-model training, but the other components of the work�ow
also need to be scalable to be on-par with the DL-model data requirements. To
render the virtual scenes, UE requires the use of a Vulkan-compatible GPU, as
is present in visualization or data analysis modules. Using Synavis, DL methods

6 D. Baker et al.

synavisLeaf Area
Tiller Delay

Blade Length

Branching
Chance

...

Weather

Camera

Movement

Shared Domain
Stochasticity
Functional Traits

Geometry

Label Data

Domain
Augmentation

Plant

Box
C Plant

Box
C

E1 E2

Scene Partition Controller

A B

Unreal Engine

Unreal Engine

Synavis Camera
Agent

Loss

Fig. 1. Setup of pipelines in di�erent distribution techniques. Measurements are high-
lighted and are also implemented in Synavis. The listed parameters are the primary
steering parameters for the individual scenario. A. Continuous update with the in-
tended use-case of adaptive data generation. B. Scene partition using Synavis and UE.

gain access to the domain-speci�c augmentation that is otherwise not accessible,
which directly improves the pipelines that are also increasingly domain speci�c,
with the potential for more impact.

3.2 HPC Scenario: Image Generation for Computer Vision

Computer Vision (CV) algorithms need labeled image data but often do not
need to interact with the virtual environment. As such, compute infrastructure
services for these systems should focus on enabling a responsive data generation
to optimize DL training results. In our service implementation, Synavis keeps
sending new FSPM realizations to UE, and parameter adaption directly in�u-
ences the information content of rendered images. This is illustrated in Fig. 1.A,
showing sample parameters that can be adapted in CPlantBox as well as in UE.

Ceaselessly updating the scene during image capture is a process that only
functions if the relative speed of the camera agent compared to the simulation
time is su�ciently slow. This limitation is largely dependent on how many plants
need to be rendered, and how fast the FSPM computes a time step. In this
setup, the DL framework typically has full authoritative control over the �eld
generation, and all data as well as images being generated depend on initial
parameters or direct steering. This method depends on the live coupling of the
FSPM with the environment. Evaluation of the FSPM is done on-demand, but as

Adapting Virtual Environments in Game Engines to HPC 7

the virtual world is fully dynamic, we input a ceaseless stream of plant geometries
to place in the scene, relative to the camera agent.

Continuous evaluation might also be used to capture images of plant �elds
that have to be consistent but with no functional simulation, such as nutrient
�uxes and photosynthesis [14], which have inherently competing elements. Ab-
sence of functional simulation, however, does not imply that the training data
lacks functional information, as structural parameters can be �tted to experi-
mental conditions like phosphorus availability, as done by Bauer et al. [28].

3.3 HPC Scenario: Virtual Worlds for Multi-Agent Systems

Field partitioning becomes necessary at the scales that we see in agriculture, as
rendering an average �eld size of 36.4 ha [30] in high detail requires distributed
rendering. Infrastructurally, there needs to be an expedient pathway towards
this partitioning that does not disturb the user-centered setup for these virtual
environments, a challenge we meet through both explicit and implicit scene par-
titioning. We illustrate this approach in Fig. 1.B, which shows the setup with the
partition controller that knows the partitioning boundaries and will connect the
camera agent to a speci�c renderer when it enters its assigned area. The areas
also de�ne uniquely what plant structure is assigned to a speci�c location. An
instance of the FSPM is assigned a seed at the start, and all organs are stochastic
realizations of the input distributions of the parameter space [13]. The upscal-
ing of the individual FSPMs to �eld level yields information on between-plant
competition, for example to absorb sunlight. The �eld partitioning is stochastic
seed based, which means that there would be structural (and thus functional)
consistency between the individual compute nodes. The result is a fully informed
virtual �eld that contains agricultural information, such as plant age, health, or
leaf areas. This distribution is most e�ective if cameras are evenly distributed
to nodes.

The partitioning, as seen in Fig. 1.B, is dependent on the preemptive assign-
ment of regions to nodes. For a speci�c instance of UE, the simulation only
generates a subset of the �eld, which in turn depends on how boundary con-
ditions are being handles. For the purposes of the transition between rendering
back-ends for a continuous camera path, we include a bu�er region that is shared
between neighboring nodes. This region is generated in addition and does not
need to be communicated, as CPlantBox can generate identical structures on
demand. Which rendering node is used is de�ned based on position on the �eld,
which makes it necessary for the user to set the �eld partition in the run script
or environment variables. Using Synavis for the scene partitioning allows the
change of the camera source, depending on the position of the camera agent
relative to the boundaries of the scene partitioning, as illustrated in Fig. 1.B.
In our setups, we pre-register the streaming connection between endpoints on
the in�niband [31] network, which is dedicated to HPC users. This means that
the initialization phase is being skipped and the receiving application already
allocated communication ports.

8 D. Baker et al.

Module JURECA-DC
CPU 2x AMD EPYC 7742, 2x64 Cores, 2.25 GHz
Memory 512 (16Ö 32) GB DDR4, 3200 MHz
GPU 4Ö NVIDIA A100 GPU, 4Ö 40 GB HBM2e
Network 2Ö In�niBand HDR (NVIDIA Mellanox Connect-X6)

Table 1. Node con�guration for our tests. Instances of UE are run on dedicated nodes.

3.4 Experimental Setup

We tested two con�gurations, which are also highlighted in Fig. 1.A. These tests
were performed on nodes of the JURECA-DC GPU module [32], with the node
con�guration shown in Tab. 1. We evaluated the rendering performance through
the use of Synavis, which induces the transfer of a video stream. To measure the
use-case of a continuous update that is applicable to CV as described in Sec. 3.2,
we tested the rendering of N instances of the FSPM CPlantBox in Experiment
1 (E1). We measured the frame time as reported by UE through Synavis and
the GPU utilization via the graphics vendor driver software. Details on the soft-
ware and data setup are described in Sec. 3.1. We ran UE on 4000× 3000 pixel
resolution, with VP9 encoding on CPU. The partitioning of the virtual �eld into
instances of UE has a speci�c worst case, which is concurrently running the in-
stances of UE on one GPU node. We evaluated this in E2, which is highlighted in
Fig. 1.B, using four concurrent instances of UE, running with a constant stream
of new geometries similar to E1, but on the same node. Here, we evaluated the
frame time performance for 4N instances of the simulation model. In this case,
we tested the framework within one module, which means that setups that need
to bridge via Ethernet will be slower than our setup using In�niband. The frame-
work has a baseline workload resulting from rendering an empty sunlit scene,
and a minimum duration for the handling of commands.

4 Results

The measurement of E1, seen in Fig. 2 yielded no �xed maximum �eld size,
but a decreased e�ciency with increasing plant number. We measured a slightly
superlinear increase in frame time for more complex scenes while the e�ciency of
using the GPU node decreased. Fig. 2 shows the relative rendering performance
depending on the amount of plants rendered in the scene, each with 28 d of
growth time. Frame time average increased to 0.09 s which is roughly 10.7 frames
per second at about 10k plant geometries. Notably, we observe a decreased GPU
utilization, which is due to GPU memory exhaustion, resulting in more loading
operations from the main memory. This results in a reduced e�ciency of using the
GPU node, which indirectly results in a decreased energy e�ciency. While GPU
usage is not the primary performance metric of the whole pipeline, we would
like to keep this value above 80%, which referring to Fig. 2 yields an instance
count of just below 2000 plants. As the simulation model and all new instances
continue to be evaluated over time, Synavis constantly updates the scene and

Adapting Virtual Environments in Game Engines to HPC 9

Fig. 2. Frame time measurement average for a �eld of N plants that are being contin-
uously updated.

changes parameters. The highest impact to the rendering performance is entity
creation, which refers to the spawning of a plant simulation model in the scene,
along with registering of the object and handling of geometry information.

Fig. 3. Impact of rendering N ∗ 4 geometries in UE concurrently on the same node as
opposed to di�erent nodes.

For E2, we show measurements of concurrent and non-concurrent rendering
in UE on GPU nodes in Fig. 3. We observe, in the case of concurrently rendering
four UE instances, a higher frame time on average as well as higher variance
in frame time. The communication and geometric operations directly compete
in this setting, for the In�niband[31] network latency/throughput as well as in
terms of memory operations. We note that we could not exclude e�ects from CPU
usage competition between the instance of UE, because the base UE implemen-
tation does not respond to environmental variables and the parallel execution
of UE threads might be suboptimal. The update time of individual plants in E1

10 D. Baker et al.

is short enough that we are achieving a rendering time of more than 25 frames
per second (0.04 s) for up to 3200 plants per GPU. An important note is that
for distributed data generation, the image and environmental conditions such as
weather and light need to be randomized to facilitate scalable training. Changing
the settings of the virtual environment is typically done within 0.1 s from the
time of prompting.

5 Discussion

The combination of simulation models, UE, and DL to enhance understanding
and algorithms in plant science is a challenge both on a software level as well
as infrastructural, as the necessary components have di�erent requirements and
best practices. Generally, synthetic data training is most e�ective with a founda-
tional DL-model as basis, and subsequent real-world data �ne-tuning. Synthetic
data provides a scalable [12,5] approach to generate a diverse [6,18] data set but
might not replicate all potential artifacts. In plant science, it is more impact-
ful if rendered images contain biologically relevant information through plant
simulation. Large �eld sizes that exceed GPU memory need to be partitioned
once there are simultaneous observations in distant areas. This is partly because
proper �eld upscaling should lift the plant model to the �eld scale at which agri-
cultural decisions can be made. Our setup also allows multi-agent systems to
communicate status information and the virtual scene can replicate visual infor-
mation for each camera. The two main considerations that need to be discussed
are how well our service-based infrastructural support performs with UE, and
what we need to do to provide these pipelines to plant scientists.

5.1 Distribution Performance

The performance measurements were done purely from the standpoint of ren-
dering performance. However, for a large-scale training use-case, the rendering
performance might be secondary to an e�cient use of tensor cores for the neural
network training. Particularly if there need to be images with many plants in
one view, users might forego the need for stitching and just assign all plants to
one UE instance, resulting in a lower GPU utilization, which might not be crit-
ical in some cases. Furthermore, individual operations will re�ect in the image
data with a slight delay. Previous measurements in this framework have yielded
a time di�erence between change request and con�rmation of 0.1 s [12], but the
execution of individual message workloads is done in bulk for certain operations
(such as geometry data loading).

Streamlike data generation for CV is a suitable tool to create responsive and
dynamic data that can change to the needs for the training framework. This is
similar to active training frameworks, but the "rendering-in-the-loop" tuning of
the virtual environment allows for a much more precise optimization of training
impact. We achieve fairly good performance regarding the rendering of a large
number of complex geometries. Our approach accommodates dynamic coupling

Adapting Virtual Environments in Game Engines to HPC 11

CPU Node GPU Node Tensor Node

Modelling

Leaf Blade Calibration

Geometry (Re-)construction

Infer oriented circles
In 3D space using
Organ-local robust
orientations

Linear Description
𝑝𝑖 ± 𝑑𝑖 ⋅ 𝑟

Radial description
𝑐 +

cos 𝜑𝑖

sin 𝜑𝑖

Leaf Area,
Radial

distances,
Radial angles

Organ and canopy
meshing by
inferring organ
shape from organ
type

Plant Topology

Discretized
Structure

Plant Morphology

Point
data

Roots

Shoot

Di
sc
re
�z
ed

Fu
nc
�o

n

C
on

ce
pt

ua
l P

la
nt

C
Pl

an
tB

ox
 R

ep
re

se
nt

at
io

n

𝑝 ∈ ℝ3

Edge
Data

Simulation
Render
Mode

Raytracing
Content
Encoder
RTC

Camera
-Movement
-Resolution
-Number

Distance
Instances
Counts
Positions

Scene
Capture

Label
Data

y

y*

L(y,y*)

Label
Prompts

Fig. 4. Overview of technical components and data �ows. The illustrated assignment
to speci�c nodes is a performance recommendation, though individual components can
share resources. A linked line indicates concurrent coupling.

such that we can partition large scales into individual instances through Synavis.
As we are fully simulating the FSPMs, there are discrete updates to the scene
geometry, which is not the case for pre-built geometries, but the approach is
more scalable and directly visualizes biological information. The feedback loop
between simulation and rendering allows for an exact quanti�cation of either
classi�cation error thresholds (in domain-speci�c measures) or an analysis of
robustness against scene conditions.

Dynamic camera coupling is a powerful tool to allow for a coherent �eld
partitioning with multiple camera agents. We can render a much larger �eld by
distributing the scene. Based on the desire to render e�ciently with at least
80% GPU usage, we need to split an average of 50k plants per ha [33] into
25 GPUs per ha otherwise sacri�cing GPU node e�ciency as measured in E1 in
Fig. 2. Transitions between individual nodes is reasonably fast with pre-registered
connections (within 0.2 s). Drawbacks arise from the fact that there needs to be
overlap between the areas of the �eld in cases of rendering simulation models to
avoid information con�ict, reducing the partitioning e�ciency. Reconstructing
a full video from this technique requires a few steps, e.g. a "fade" transition
between streaming sources. Field partitioning allows for a better use of GPU
resources, as we see that with more geometries on a single node (Fig. 2), the
GPU utilization decreases, leading to less e�cient use of compute time.

5.2 Infrastructural Support

Our example work�ows consist of multiple components, that can be programmed
together using Synavis. We acknowledge that the level of complexity involved
in this system is high. However, due to the large amount of previous work in
both the FSPM CPlantBox [14,13,16,17] as well as the compatibility provided by
UE, new users will have an easier time adapting to each component individually.
Due to the standardized method of communication between the frameworks,

12 D. Baker et al.

we are furthermore robust towards software version changes, which increases
the inherent longevity of the framework in an everchanging HPC infrastructure
landscape.

It is generally recommended that, for training purposes, multiple nodes are
allocated, at least one of which would be a data generation node with UE.
Fig. 4 shows the components and what primary computing resource they utilize.
Notably, the plant simulation produces geometries quite fast, while the functional
coupling (particularly in the soil domain) requires �xed-point iteration solvers
and thus might delay the digital plant evolution in cases of coupled growth. A
functional coupling generally is most e�ciently calculated on a shared memory
system using all resources, while a purely structural simulation might run on the
same node as UE. Our recommendation is to separate the neural network training
and the data production, though it is possible to run these components on the
same machine provided it has multiple GPUs. Particularly, this is one of the
use-cases in which it is imperative to provide exclusive-use visualization or data
analysis nodes to users. This is because shared GPU nodes which provide the
only rendering capabilities in the system will inhibit certain scienti�c use-cases of
HPC systems, especially in times of dedicated technologies such as tensor cores
or massively-parallel GPUs as present in LUMI [34] or the planned JUPITER
system [35].

6 Conclusion

Distributed rendering of plant �elds for data generation is pertinent, especially in
instances where large data sets, that would be cumbersome to store, are needed
for the training. We enabled rendering virtual �elds from plant simulations on
nodes of the supercomputer JURECA-DC, highlighting continuous scene up-
dates as well as �eld distribution as potential use-cases. With a strong basis
of representative synthetic data, we have established techniques for distributed
remote virtual environment rendering, and aim for large-scale use cases, such as
light simulation [36], in the future. Furthermore, we want to extend our work on
improving rendering performance and load balancing between nodes, depending
on use-cases. We have shown that the parallel rendering and simulation of virtual
environments is a valuable tool to establish a scalable data production pipeline
and synthetic training environments for plant data analysis models, which is one
of the most a�ected domains in terms of data scarcity and under-use of HPC
infrastructure.

Acknowledgments. The authors would like to acknowledge funding provided by
the German government to the Gauss Centre for Supercomputing via the InHPC-DE
project (01�H17001).

This work has partly been funded by the EUROCC2 project funded by the Euro-
pean High-Performance Computing Joint Undertaking (JU) and EU/EEA states under
grant agreement No 101101903.

This work has partly been funded by the German Research Foundation under
Germany's Excellence Strategy, EXC-2070 - 390732324 - PhenoRob and by the German

Adapting Virtual Environments in Game Engines to HPC 13

Federal Ministry of Education and Research (BMBF) in the framework of the funding
initiative �Plant roots and soil ecosystems, signi�cance of the rhizosphere for the bio-
economy� (Rhizo4Bio), subproject CROP (ref. FKZ 031B0909A).

The authors would like to acknowledge the compute time on the supercomputer
JURECA [37] at Forschungszentrum Jülich GmbH, grant VIS4AI.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

Data Availability Synavis is an open source repository and SynavisUE is its as-
sociated plugin for Unreal Engine. For new projects, we provide a template called
SynavisUEexample. The CPlantBox o�cial code can be found in the Plant-Root-Soil
modeling group GitHub. For ensured compatibility and reproducibility, the branch
associated with this paper has been forked separately. We have uploaded a video de-
scription of the method, seen in 10.6084/m9.�gshare.25723773.

References

1. Minervini, M., Scharr, H., Tsaftaris, S.A.: Image analysis: the new bottleneck in
plant phenotyping. IEEE signal processing magazine 32(4), 126�131 (2015). https:
//doi.org/10.1109/MSP.2015.2405111

2. Taiz, L.: Agriculture, plant physiology, and human population growth: past,
present, and future. Theoretical and Experimental Plant Physiology 25(3), 167�
181 (2013). https://doi.org/10.1590/S2197-00252013000300001

3. Tsaftaris, S.A., Minervini, M., Scharr, H.: Machine learning for plant phenotyping
needs image processing. Trends in plant science 21(12), 989�991 (2016). https:
//doi.org/10.1016/j.tplants.2016.10.002

4. Ward, D., Moghadam, P., Hudson, N.: Deep leaf segmentation using synthetic data.
In: Proceedings of the British Machine Vision Conference (2018). https://doi.org/
10.48550/arXiv.1807.10931

5. Bailey, B.N.: Helios: A scalable 3d plant and environmental biophysical model-
ing framework. Frontiers in Plant Science 10 (2019). https://doi.org/10.3389/fpls.
2019.01185

6. Zhang, T., Xie, L., Wei, L., Zhuang, Z., Zhang, Y., Li, B., Tian, Q.: UnrealPerson:
An Adaptive Pipeline towards Costless Person Re-identi�cation (2020). https://
doi.org/arXiv:2012.04268

7. Qiu, W., Zhong, F., Zhang, Y., Qiao, S., Xiao, Z., Kim, T.S., Wang, Y.: Unrealcv:
Virtual worlds for computer vision. In: Proceedings of the 25th ACM international
conference on Multimedia. pp. 1221�1224 (2017). https://doi.org/10.48550/arXiv.
1609.01326

8. Pound, M.P., Atkinson, J.A., Townsend, A.J., Wilson, M.H., Gri�ths, M., Jack-
son, A.S., Bulat, A., Tzimiropoulos, G., Wells, D.M., Murchie, E.H., Pridmore,
T.P., French, A.P.: Deep machine learning provides state-of-the-art performance
in image-based plant phenotyping. GigaScience 6(10) (2017). https://doi.org/10.
1093/gigascience/gix083

9. Scharr, H., Minervini, M., French, A.P., Klukas, C., Kramer, D.M., Liu, X., Luengo,
I., Pape, J.M., Polder, G., Vukadinovic, D., et al.: Leaf segmentation in plant
phenotyping: a collation study. Machine vision and applications 27(4), 585�606
(2016). https://doi.org/10.1007/s00138-015-0737-3

https://github.com/dhelmrich/Synavis
https://github.com/dhelmrich/SynavisUE
https://github.com/dhelmrich/SynavisUEexample
https://github.com/Plant-Root-Soil-Interactions-Modelling/CPlantBox
https://github.com/Plant-Root-Soil-Interactions-Modelling/CPlantBox
https://github.com/dhelmrich/CPlantBox
https://doi.org/10.6084/m9.figshare.25723773
https://doi.org/10.1109/MSP.2015.2405111
https://doi.org/10.1109/MSP.2015.2405111
https://doi.org/10.1109/MSP.2015.2405111
https://doi.org/10.1109/MSP.2015.2405111
https://doi.org/10.1590/S2197-00252013000300001
https://doi.org/10.1590/S2197-00252013000300001
https://doi.org/10.1016/j.tplants.2016.10.002
https://doi.org/10.1016/j.tplants.2016.10.002
https://doi.org/10.1016/j.tplants.2016.10.002
https://doi.org/10.1016/j.tplants.2016.10.002
https://doi.org/10.48550/arXiv.1807.10931
https://doi.org/10.48550/arXiv.1807.10931
https://doi.org/10.48550/arXiv.1807.10931
https://doi.org/10.48550/arXiv.1807.10931
https://doi.org/10.3389/fpls.2019.01185
https://doi.org/10.3389/fpls.2019.01185
https://doi.org/10.3389/fpls.2019.01185
https://doi.org/10.3389/fpls.2019.01185
https://doi.org/arXiv:2012.04268
https://doi.org/arXiv:2012.04268
https://doi.org/arXiv:2012.04268
https://doi.org/arXiv:2012.04268
https://doi.org/10.48550/arXiv.1609.01326
https://doi.org/10.48550/arXiv.1609.01326
https://doi.org/10.48550/arXiv.1609.01326
https://doi.org/10.48550/arXiv.1609.01326
https://doi.org/10.1093/gigascience/gix083
https://doi.org/10.1093/gigascience/gix083
https://doi.org/10.1093/gigascience/gix083
https://doi.org/10.1093/gigascience/gix083
https://doi.org/10.1007/s00138-015-0737-3
https://doi.org/10.1007/s00138-015-0737-3

14 D. Baker et al.

10. Kamilaris, A., Prenafeta-Boldú, F.X.: Deep learning in agriculture: A survey. Com-
puters and Electronics in Agriculture 147, 70�90 (2018). https://doi.org/10.1016/
j.compag.2018.02.016

11. Mildenhall, B., Srinivasan, P.P., Ortiz-Cayon, R., Kalantari, N.K., Ramamoor-
thi, R., Ng, R., Kar, A.: Local light �eld fusion: Practical view synthesis with
prescriptive sampling guidelines. ACM Transactions on Graphics (TOG) (2019).
https://doi.org/10.1145/3306346.3322980

12. Helmrich, D.N., Bauer, F.M., Giraud, M., Schnepf, A., Göbbert, J.H., Scharr, H.,
Hvannberg, E.Þ., Riedel, M.: A scalable pipeline to create synthetic datasets from
functional�structural plant models for deep learning. in silico Plants 6(1), diad022
(12 2023). https://doi.org/10.1093/insilicoplants/diad022

13. Zhou, X.R., Schnepf, A., Vanderborght, J., Leitner, D., Lacointe, A., Vereecken,
H., Lobet, G.: CPlantBox, a whole-plant modelling framework for the simulation
of water- and carbon-related processes. in silico Plants 2(1) (2020). https://doi.
org/10.1093/insilicoplants/diaa001

14. Giraud, M., Gall, S.L., Harings, M., Javaux, M., Leitner, D., Meunier, F., Rothfuss,
Y., van Dusschoten, D., Vanderborght, J., Vereecken, H., Lobet, G., Schnepf, A.:
CPlantBox: a fully coupled modelling platform for the water and carbon �uxes
in the soil�plant�atmosphere continuum. in silico Plants 5(2) (2023). https://doi.
org/10.1093/insilicoplants/diad009

15. Lobet, G., Koevoets, I.T., Noll, M., Meyer, P.E., Tocquin, P., Pagès, L., Périlleux,
C.: Using a structural root system model to evaluate and improve the accuracy of
root image analysis pipelines. Frontiers in Plant Science 8 (2017). https://doi.org/
10.3389/fpls.2017.00447

16. Schnepf, A., Huber, K., Landl, M., Meunier, F., Petrich, L., Schmidt, V.: Statisti-
cal characterization of the root system architecture model crootbox. Vadose Zone
Journal 17(1) (2018). https://doi.org/https://doi.org/10.2136/vzj2017.12.0212

17. Morandage, S., Laloy, E., Schnepf, A., Vereecken, H., Vanderborght, J.: Bayesian
inference of root architectural model parameters from synthetic �eld data. Plant
and Soil 467(1), 67�89 (2021). https://doi.org/10.1007/s11104-021-05026-4

18. Zhang, Y., Qiu, W., Chen, Q., Hu, X., Yuille, A.: Unrealstereo: Controlling haz-
ardous factors to analyze stereo vision (2018)

19. McCormac, J., Handa, A., Leutenegger, S., Davison, A.J.: Scenenet rgb-d: Can 5m
synthetic images beat generic imagenet pre-training on indoor segmentation? In:
Proceedings of the IEEE International Conference on Computer Vision (ICCV)
(2017). https://doi.org/10.1109/ICCV.2017.292

20. Roberts, M., Dey, D., Truong, A., Sinha, S.N., Shah, S., Kapoor, A., Hanrahan,
P., Joshi, N.: Submodular trajectory optimization for aerial 3D scanning. CoRR
https://doi.org/abs/1705.00703 (2017)

21. Nassif, J., Tekli, J., Kamradt, M.: Digital Images � The Bread and Butter of
Computer Vision, pp. 89�106. Springer Nature Switzerland, Cham (2024). https:
//doi.org/10.1007/978-3-031-47560-3_5

22. Bondi, E., Dey, D., Kapoor, A., Piavis, J., Shah, S., Fang, F., Dilkina, B., Han-
naford, R., Iyer, A., Joppa, L., Tambe, M.: Airsim-w: A simulation environment
for wildlife conservation with uavs. COMPASS '18, Association for Computing
Machinery, New York, NY, USA (2018). https://doi.org/10.1145/3209811.3209880

23. Mu, J., Qiu, W., Hager, G.D., Yuille, A.L.: Learning from synthetic animals. CoRR
https://doi.org/abs/1912.08265 (2019)

24. Berrigan, E.M., Wang, L., Carrillo, H., Echegoyen, K., Kappes, M., Torres, J.,
Ai-Perreira, A., McCoy, E., Shane, E., Copeland, C.D., Ragel, L., Georgousakis,

https://doi.org/10.1016/j.compag.2018.02.016
https://doi.org/10.1016/j.compag.2018.02.016
https://doi.org/10.1016/j.compag.2018.02.016
https://doi.org/10.1016/j.compag.2018.02.016
https://doi.org/10.1145/3306346.3322980
https://doi.org/10.1145/3306346.3322980
https://doi.org/10.1093/insilicoplants/diad022
https://doi.org/10.1093/insilicoplants/diad022
https://doi.org/10.1093/insilicoplants/diaa001
https://doi.org/10.1093/insilicoplants/diaa001
https://doi.org/10.1093/insilicoplants/diaa001
https://doi.org/10.1093/insilicoplants/diaa001
https://doi.org/10.1093/insilicoplants/diad009
https://doi.org/10.1093/insilicoplants/diad009
https://doi.org/10.1093/insilicoplants/diad009
https://doi.org/10.1093/insilicoplants/diad009
https://doi.org/10.3389/fpls.2017.00447
https://doi.org/10.3389/fpls.2017.00447
https://doi.org/10.3389/fpls.2017.00447
https://doi.org/10.3389/fpls.2017.00447
https://doi.org/https://doi.org/10.2136/vzj2017.12.0212
https://doi.org/https://doi.org/10.2136/vzj2017.12.0212
https://doi.org/10.1007/s11104-021-05026-4
https://doi.org/10.1007/s11104-021-05026-4
https://doi.org/10.1109/ICCV.2017.292
https://doi.org/10.1109/ICCV.2017.292
https://doi.org/abs/1705.00703
https://doi.org/abs/1705.00703
https://doi.org/10.1007/978-3-031-47560-3_5
https://doi.org/10.1007/978-3-031-47560-3_5
https://doi.org/10.1007/978-3-031-47560-3_5
https://doi.org/10.1007/978-3-031-47560-3_5
https://doi.org/10.1145/3209811.3209880
https://doi.org/10.1145/3209811.3209880
https://doi.org/abs/1912.08265
https://doi.org/abs/1912.08265

Adapting Virtual Environments in Game Engines to HPC 15

C., Lee, S., Reynolds, D., Talgo, A., Gonzalez, J., Zhang, L., Rajurkar, A.B.,
Ruiz, M., Daniels, E., Maree, L., Pariyar, S., Busch, W., Pereira, T.D.: Fast and
e�cient root phenotyping via pose estimation. Plant Phenomics 6, 0175 (2024).
https://doi.org/10.34133/plantphenomics.0175

25. Aumüller, M.: The architecture of vistle, a scalable distributed visualization sys-
tem. In: Markidis, S., Laure, E. (eds.) Solving Software Challenges for Exascale.
pp. 141�147. Springer International Publishing, Cham (2015)

26. Larsen, M., Meredith, J.S., Navrátil, P.A., Childs, H.: Ray tracing within a data
parallel framework. In: 2015 IEEE Paci�c Visualization Symposium (Paci�cVis).
pp. 279�286 (2015). https://doi.org/10.1109/PACIFICVIS.2015.7156388

27. Moreland, K., Sewell, C., Usher, W., Lo, L.t., Meredith, J., Pugmire, D., Kress,
J., Schroots, H., Ma, K.L., Childs, H., Larsen, M., Chen, C.M., Maynard, R.,
Geveci, B.: Vtk-m: Accelerating the visualization toolkit for massively threaded
architectures. IEEE Computer Graphics and Applications 36(3), 48�58 (2016).
https://doi.org/10.1109/MCG.2016.48

28. Bauer, F.M., Lobet, G., Helmrich, D.N., Galinski, A., Kahlilova, Z., Zaner, L.,
Kuczkowska, M., Yu, P., Dörmann, P., Schaaf, G., Schnepf, A.: In silico investi-
gation on phosphorus e�ciency of zea mays: An experimental whole plant model
parametrization approach (2023). https://doi.org/10.34734/FZJ-2023-04031

29. Karis, B., Stubbe, R., Wihlidal, G.: A Deep Dive into Unreal Engine 5's Nanite.
In: SIGGRAPH (2021)

30. White, E.V., Roy, D.P.: A contemporary decennial examination of changing agri-
cultural �eld sizes using landsat time series data. Geo: Geography and Environment
2(1), 33�54 (2015). https://doi.org/10.1002/geo2.4

31. Pentakalos, O.I.: An introduction to the in�niband architecture. In: Int. CMG
Conference (2002). https://doi.org/10.1109/9780470544839.ch42

32. Thörnig, P.: JURECA: Data Centric and Booster Modules implementing the Mod-
ular Supercomputing Architecture at Jülich Supercomputing Centre. Journal of
large-scale research facilities JLSRF (2021). https://doi.org/10.17815/jlsrf-7-182

33. Zhang, Y., Xu, Z., Li, J., Wang, R.: Optimum planting density improves resource
use e�ciency and yield stability of rainfed maize in semiarid climate. Frontiers in
Plant Science 12 (2021). https://doi.org/10.3389/fpls.2021.752606

34. Markomanolis, G.S., Alpay, A., Young, J., Klemm, M., Malaya, N., Espos-
ito, A., Heikonen, J., Bastrakov, S., Debus, A., Kluge, T., Steiniger, K.,
Stephan, J., Widera, R., Bussmann, M.: Evaluating GPU programming models
for the lumi supercomputer. In: Panda, D.K., Sullivan, M. (eds.) Supercomput-
ing Frontiers. Springer International Publishing (2022). https://doi.org/10.1007/
978-3-031-10419-0_6

35. Shapiro, A.: Nvidia grace hopper superchip powers jupiter, de�ning a new class of
supercomputers to propel AI for scienti�c discovery. NVIDIA Enterprise Network-
ing Press Release (2023), https://nvidianews.nvidia.com/news/[...]

36. Malenovský, Z., Regaieg, O., Yin, T., Lauret, N., Guilleux, J., Chavanon, E., Du-
ran, N., Janoutová, R., Delavois, A., Meynier, J., Medjdoub, G., Yang, P., van der
Tol, C., Morton, D., Cook, B.D., Gastellu-Etchegorry, J.P.: Discrete anisotropic
radiative transfer modelling of solar-induced chlorophyll �uorescence: Structural
impacts in geometrically explicit vegetation canopies. Remote Sensing of Environ-
ment 263 (2021). https://doi.org/10.1016/j.rse.2021.112564

37. Krause, D., Thörnig, P.: JURECA: modular supercomputer at Jülich Super-
computing Centre. Journal of large-scale research facilities JLSRF (2018). https:
//doi.org/10.17815/jlsrf-4-121-1

https://doi.org/10.34133/plantphenomics.0175
https://doi.org/10.34133/plantphenomics.0175
https://doi.org/10.1109/PACIFICVIS.2015.7156388
https://doi.org/10.1109/PACIFICVIS.2015.7156388
https://doi.org/10.1109/MCG.2016.48
https://doi.org/10.1109/MCG.2016.48
https://doi.org/10.34734/FZJ-2023-04031
https://doi.org/10.34734/FZJ-2023-04031
https://doi.org/10.1002/geo2.4
https://doi.org/10.1002/geo2.4
https://doi.org/10.1109/9780470544839.ch42
https://doi.org/10.1109/9780470544839.ch42
https://doi.org/10.17815/jlsrf-7-182
https://doi.org/10.17815/jlsrf-7-182
https://doi.org/10.3389/fpls.2021.752606
https://doi.org/10.3389/fpls.2021.752606
https://doi.org/10.1007/978-3-031-10419-0_6
https://doi.org/10.1007/978-3-031-10419-0_6
https://doi.org/10.1007/978-3-031-10419-0_6
https://doi.org/10.1007/978-3-031-10419-0_6
https://nvidianews.nvidia.com/news/nvidia-grace-hopper-superchip-powers-jupiter-defining-a-new-class-of-supercomputers-to-propel-ai-for-scientific-discovery
https://doi.org/10.1016/j.rse.2021.112564
https://doi.org/10.1016/j.rse.2021.112564
https://doi.org/10.17815/jlsrf-4-121-1
https://doi.org/10.17815/jlsrf-4-121-1
https://doi.org/10.17815/jlsrf-4-121-1
https://doi.org/10.17815/jlsrf-4-121-1

	Adapting Agricultural Virtual Environments in Game Engines to Improve HPC Accessibility

