001026360 001__ 1026360 001026360 005__ 20250204113855.0 001026360 0247_ $$2doi$$a10.1007/s00220-023-04905-4 001026360 0247_ $$2ISSN$$a0010-3616 001026360 0247_ $$2ISSN$$a1432-0916 001026360 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-03391 001026360 0247_ $$2WOS$$aWOS:001165283300005 001026360 037__ $$aFZJ-2024-03391 001026360 041__ $$aEnglish 001026360 082__ $$a510 001026360 1001_ $$0P:(DE-HGF)0$$aVuillot, Christophe$$b0$$eCorresponding author 001026360 245__ $$aHomological Quantum Rotor Codes: Logical Qubits from Torsion 001026360 260__ $$aHeidelberg$$bSpringer$$c2024 001026360 3367_ $$2DRIVER$$aarticle 001026360 3367_ $$2DataCite$$aOutput Types/Journal article 001026360 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1715941207_13773 001026360 3367_ $$2BibTeX$$aARTICLE 001026360 3367_ $$2ORCID$$aJOURNAL_ARTICLE 001026360 3367_ $$00$$2EndNote$$aJournal Article 001026360 520__ $$aWe formally define homological quantum rotor codes which use multiple quantum rotors to encode logical information. These codes generalize homological or CSS quantum codes for qubits or qudits, as well as linear oscillator codes which encode logical oscillators. Unlike for qubits or oscillators, homological quantum rotor codes allow one to encode both logical rotors and logical qudits in the same block of code, depending on the homology of the underlying chain complex. In particular, a code based on the chain complex obtained from tessellating the real projective plane or a Möbius strip encodes a qubit. We discuss the distance scaling for such codes which can be more subtle than in the qubit case due to the concept of logical operator spreading by continuous stabilizer phase-shifts. We give constructions of homological quantum rotor codes based on 2D and 3D manifolds as well as products of chain complexes. Superconducting devices being composed of islands with integer Cooper pair charges could form a natural hardware platform for realizing these codes: we show that the 0- qubit as well as Kitaev’s current-mirror qubit—also known as the Möbius strip qubit—are indeed small examples of such codes and discuss possible extensions. 001026360 536__ $$0G:(DE-HGF)POF4-5214$$a5214 - Quantum State Preparation and Control (POF4-521)$$cPOF4-521$$fPOF IV$$x0 001026360 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 001026360 7001_ $$0P:(DE-Juel1)187048$$aCiani, Alessandro$$b1 001026360 7001_ $$0P:(DE-Juel1)174062$$aTerhal, Barbara M.$$b2 001026360 773__ $$0PERI:(DE-600)1458931-X$$a10.1007/s00220-023-04905-4$$gVol. 405, no. 2, p. 53$$n2$$p53$$tCommunications in mathematical physics$$v405$$x0010-3616$$y2024 001026360 8564_ $$uhttps://juser.fz-juelich.de/record/1026360/files/2303.13723v3.pdf$$yOpenAccess 001026360 8564_ $$uhttps://juser.fz-juelich.de/record/1026360/files/2303.13723v3.gif?subformat=icon$$xicon$$yOpenAccess 001026360 8564_ $$uhttps://juser.fz-juelich.de/record/1026360/files/2303.13723v3.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess 001026360 8564_ $$uhttps://juser.fz-juelich.de/record/1026360/files/2303.13723v3.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 001026360 8564_ $$uhttps://juser.fz-juelich.de/record/1026360/files/2303.13723v3.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 001026360 909CO $$ooai:juser.fz-juelich.de:1026360$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 001026360 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187048$$aForschungszentrum Jülich$$b1$$kFZJ 001026360 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5214$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0 001026360 9141_ $$y2024 001026360 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-25 001026360 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-25 001026360 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2023-08-25$$wger 001026360 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 001026360 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCOMMUN MATH PHYS : 2022$$d2024-12-28 001026360 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-28 001026360 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-28 001026360 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-28 001026360 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-28 001026360 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-28 001026360 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-28 001026360 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-28 001026360 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-28 001026360 920__ $$lyes 001026360 9201_ $$0I:(DE-Juel1)PGI-12-20200716$$kPGI-12$$lQuantum Computing Analytics$$x0 001026360 980__ $$ajournal 001026360 980__ $$aVDB 001026360 980__ $$aUNRESTRICTED 001026360 980__ $$aI:(DE-Juel1)PGI-12-20200716 001026360 9801_ $$aFullTexts