001     1026361
005     20250204113855.0
024 7 _ |a 10.1080/27694127.2024.2348899
|2 doi
024 7 _ |a 10.34734/FZJ-2024-03392
|2 datacite_doi
037 _ _ |a FZJ-2024-03392
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Üffing, Alina
|0 P:(DE-Juel1)181095
|b 0
|e First author
245 _ _ |a Highlighting the hidden: monitoring the avidity-driven association of a fluorescent GABARAP tandem with microtubules in living cells
260 _ _ |a London
|c 2024
|b Taylor & Francis Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1715931541_32187
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.
520 _ _ |a GABARAP, like other ATG8 proteins, is a ubiquitin-like modifier and its C-terminal lipid conjugation enables association with cellular membranes. To prevent interference with the lipidation process, N-terminal fluorescent protein (FP) tagging strategies have become the standard for studying ATG8 localization and function in living cells, significantly contributing to our understanding of this protein family’s multifaceted roles. We employed live cell imaging with particular emphasis on a GABARAP split-tandem construct, GABARAP(G116A)-mTagBFP2-GABARAP (G-B-G), which retains both a free N-terminus and a lipidation-competent c-terminus, while bivalence creates a gain in affinity conferred by avidity. Notably, reminiscent of early in vitro studies demonstrating an interaction of GABARAP and tubulin, our results revealed a robust association of G-B-G with the microtubule network in living cells. We show that the presence of several basic residues in the amino-terminal helical subdomain of GABARAP and avidity emerged as essential for robust MT association, whereas lipidation ability was not decisive. Interestingly, while the position of the FP-tag had little influence on the result, the nature of the FP itself was crucial, with mTagBFP2 being required for tracking GABARAP tandems in the vicinity of MTs. Though artificial effects cannot be excluded, we assume that G-B-G, with its increased avidity, can give visibility to processes that are based on inherently weak interactions, and thus can help elucidate potential roles of GABARAP e.g. in microtubule-associated processes that are integral to autophagy-related and -unrelated cellular transport.
536 _ _ |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524)
|0 G:(DE-HGF)POF4-5241
|c POF4-524
|f POF IV
|x 0
536 _ _ |a SFB 1208 B02 - Spezifische Rollen von Atg8s im Vesikeltransport (B02) (289554527)
|0 G:(GEPRIS)289554527
|c 289554527
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Gold, Lisa
|b 1
700 1 _ |a Gensch, Thomas
|0 P:(DE-Juel1)131924
|b 2
700 1 _ |a Weiergräber, Oliver H.
|0 P:(DE-Juel1)131988
|b 3
700 1 _ |a Hoffmann, Silke
|0 P:(DE-Juel1)132003
|b 4
|e Corresponding author
700 1 _ |a Willbold, Dieter
|0 P:(DE-Juel1)132029
|b 5
773 _ _ |a 10.1080/27694127.2024.2348899
|g Vol. 3, no. 1, p. 2348899
|0 PERI:(DE-600)3122278-X
|n 1
|p 2348899
|t Autophagy reports
|v 3
|y 2024
|x 2769-4127
856 4 _ |u https://doi.org/10.1080/27694127.2024.2348899
856 4 _ |u https://juser.fz-juelich.de/record/1026361/files/Highlighting%20the%20hidden%20monitoring%20the%20avidity-driven%20association%20of%20a%20fluorescent%20GABARAP%20tandem%20with%20microtubules%20in%20living%20cells.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1026361
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)181095
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131924
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131988
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)132003
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)132029
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5241
|x 0
914 1 _ |y 2024
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-31
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-08-08T20:23:21Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-08-08T20:23:21Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-08-08T20:23:21Z
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBI-7-20200312
|k IBI-7
|l Strukturbiochemie
|x 0
920 1 _ |0 I:(DE-Juel1)IBI-1-20200312
|k IBI-1
|l Molekular- und Zellphysiologie
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBI-7-20200312
980 _ _ |a I:(DE-Juel1)IBI-1-20200312
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21