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A B S T R A C T   

Adaptive decision-making, which is often impaired in various psychiatric conditions, is essential for well-being. 
Recent evidence has indicated that decision-making capacity in multiple tasks could be accounted for by latent 
dimensions, enlightening the question of whether there is a common disruption of brain networks in economic 
decision-making across psychiatric conditions. Here, we addressed the issue by combining activation/lesion 
network mapping analyses with a transdiagnostic brain imaging meta-analysis. Our findings indicate that there 
were transdiagnostic alterations in the thalamus and ventral striatum during the decision or outcome stage of 
decision-making. The identified regions represent key nodes in a large-scale network, which is composed of 
multiple heterogeneous brain regions and plays a causal role in motivational functioning. The findings suggest 
that disturbances in the network associated with emotion- and reward-related processing play a key role in 
dysfunctions of decision-making observed in various psychiatric conditions. This study provides the first meta- 
analytic evidence of common neural alterations linked to deficits in economic decision-making.   

1. Introduction 

Decision-making generally refers to making a choice guided by a 
comparison of the utility or subjective value of available options (Ber-
ridge and O’Doherty, 2014; Neumann and Morgenstern, 1972). Making 
appropriate choices is critical for securing the resources required for 
human survival and development. Maladaptive decisions, conversely, 
result in serious problems, such as poverty and homelessness, and are 
associated with many psychiatric disorders (Haushofer and Fehr, 2014; 
Sharman et al., 2016). For example, several psychiatric disorders, 
including conduct disorders (CD), substance use disorders (SUD), 
depression, schizophrenia, and gambling disorder (GD), often exhibit a 
diminished ability to make adaptive economic decisions (Baek et al., 
2017; Fujino et al., 2018; Huang et al., 2016; Hulvershorn et al., 2015; 
Jin et al., 2022). These findings indicated that economic 

decision-making impairment is transdiagnostic and may constitute a 
core facet of various psychiatric disorders (Griffiths et al., 2014; Lee, 
2013). Accordingly, it is imperative to reveal potential common neu-
ropsychological deficits related to economic decision-making across 
psychiatric conditions. 

Economic decision-making can be decomposed into at least two 
stages. First, in the decision stage, individuals need to evaluate and 
compare the subjective utility of alternatives for selection by integrating 
various information such as risk/probabilities (likely/unlikely), valence 
(gains/losses), and timing (immediate/delayed), resulting in a decision 
plan into action (Berridge and O’Doherty, 2014; Goschke, 2014; Rangel 
et al., 2008; Sonuga-Barke et al., 2016). Second, in the outcome stage, 
individuals would compare expected and derived utility, with the dif-
ferences between them resulting in prediction errors. This stage recruits 
the processing of emotions related to feedback (e.g., gains) and the 

* Corresponding authors at: School of Psychology, South China Normal University, Guangzhou, China. 
E-mail addresses: chunliang.feng@m.scnu.edu.cn (C. Feng), fondest@163.com (C. Qu).   

1 These authors contributed equally to the current work. 

Contents lists available at ScienceDirect 

NeuroImage 

journal homepage: www.elsevier.com/locate/ynimg 

https://doi.org/10.1016/j.neuroimage.2024.120641 
Received 5 March 2024; Received in revised form 29 April 2024; Accepted 9 May 2024   

mailto:chunliang.feng@m.scnu.edu.cn
mailto:fondest@163.com
www.sciencedirect.com/science/journal/10538119
https://www.elsevier.com/locate/ynimg
https://doi.org/10.1016/j.neuroimage.2024.120641
https://doi.org/10.1016/j.neuroimage.2024.120641
https://doi.org/10.1016/j.neuroimage.2024.120641
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


NeuroImage 294 (2024) 120641

2

assignment of updated value to the next actions (Rangel et al., 2008; 
Schultz, 2015). 

Each of the abovementioned stages engages the recruitment of 
multiple psychological components, such as reward processing and 
evaluation; notably, psychiatric disorders often exhibit consistent im-
pairments in these functions (Feng et al., 2022; McTeague et al., 2017, 
2020; Sha et al., 2019). For instance, heightened responsiveness to re-
wards or reduced responsiveness to losses is a characteristic feature of 
CD and SUD (Fairchild et al., 2009; Voon et al., 2015). As for depressed 
patients, they often display a heightened aversion to risk and loss (Baek 
et al., 2017) and they may have an impaired ability to process social 
fairness and reward, as evidenced by a lack of response in the nucleus 
accumbens and dorsal caudate (Gradin et al., 2015; He et al., 2019). 
Moreover, many mental illnesses are linked to exaggerated temporal 
discounting, such that those patients often favor smaller amounts of 
immediate reward over larger future rewards to a larger extent 
compared to healthy controls (Blair et al., 2020; Sonuga-Barke, 2014; 
White et al., 2014). In addition, patients with disruptive behavior dis-
orders (DBD) and SUD have difficulty learning to avoid decks with high 
penalties, suggesting a challenge in adjusting behavior after negative 
reinforcement (Schutter et al., 2011). Overall, empirical indications 
suggest that psychiatric disorders are associated with various economic 
decision-making deficits, which likely result from dysfunctions in mul-
tiple psychological processes important for decision-making (Goschke, 
2014; Rangel et al., 2008; Scholl and Klein-Flügge, 2018). 

With the advances in neuroeconomics and social neuroscience, a 
large body of studies has examined the neuropsychological components 
underlying economic decision-making by combining neuroimaging 
techniques (e.g., functional MRI) with various economic games 
(Glimcher and Fehr, 2014). Overall, the brain regions associated with 
economic decision-making were embedded in several different but 
interconnected brain networks implicated in emotion/reward process-
ing, value encoding, and cognitive control. These networks include key 
nodes in the salience network (SN) and the central executive network 
(CEN), such as the amygdala, thalamus, lateral prefrontal cortex (lPFC), 
ventral striatum (VS), orbitofrontal cortex (OFC), and anterior cingulate 
cortex (ACC) (Goschke, 2014; Miller and Cohen, 2001; Peters and 
Büchel, 2010; Preuschoff et al., 2006; Sonuga-Barke et al., 2016; Tobler 
et al., 2007; Tom et al., 2007; Wilson et al., 2018). Notably, there has 
been a huge interest in applying neuroeconomics to psychiatry, and an 
increasing body of evidence in this research field has revealed that 
dysfunctional affective and cognitive processes in psychiatric diseases 
are associated with abnormalities in those networks previously impli-
cated in decision-making, leading to unreliable or adverse choice be-
haviors (Cai et al., 2022; Carlisi et al., 2017; Maresh et al., 2014; Robson 
et al., 2020; Wang et al., 2015; Yao and Kendrick, 2022). In short, prior 
research has made significant strides toward explaining the neuropsy-
chological underpinnings of economic decision-making and the func-
tional abnormalities across psychiatric disorders. 

However, economic decision-making may not reflect a unified pro-
cess due to the complexity of the experimental paradigms, varying 
cognitive demands, and their reliance on multiple processes (Brand 
et al., 2007; Endrass and Ullsperger, 2021; Groen et al., 2013). It re-
mains challenging to describe how psychiatric conditions relate to dif-
ficulties in the specific cognitive processes of economic 
decision-making. Nevertheless, a recent study has revealed a central 
construct that captures general decision-making capacity, which was 
extracted from a task battery of various decision-making including 
reinforcement-learning, risk, Pavlovian heuristics, and uncertainty 
processing. Notably, the central construct is associated with resting-state 
networks and mental health metrics (Moutoussis et al., 2021). The 
central construct has notable test-retest reliability, which is higher than 
that of individual decision-making tasks (Enkavi et al., 2019; Moutoussis 
et al., 2021). These results imply that there exists covariation across 
decision-making behaviors, implying that decision-making capacity 
could be represented by latent dimensions that broadly capture the 

shared variance within the population. More importantly, this points 
towards a novel approach to examining common decision-making 
impairment—from viewing different decision-making behaviors as 
unique phenomena engaging distinct psychological processes to 
considering a general decision capacity strongly constrained by several 
core neuropsychological components transcending various decision 
behaviors. In this sense, a key question is enlightened: is there a common 
disrupted core region/network in psychiatric disorders that leads to 
their dysfunction in general economic decision-making capacity? 

To shed light on this important question, we aimed to reveal trans-
diagnostic impairments in economic decision-making across various 
experimental paradigms by employing an integrative, transdiagnostic 
framework in this study. The transdiagnostic approach is appropriate 
due to the increasing focus on defining fundamental aspects of patho-
physiologic dysfunction that transcend various clinical manifestations 
(Zald and Lahey, 2017). For instance, recent studies have revealed 
transdiagnostic deficits of cognitive control (McTeague et al., 2017), 
emotional processing (McTeague et al., 2020), and reward anticipation 
(Feng et al., 2022). Similarly, a common structural disturbance is 
evident across a variety of psychiatric disorders (Goodkind et al., 2015; 
Kempton et al., 2011; Li et al., 2020). Therefore, it seems reasonable to 
hypothesize that common neuropsychological systems might be impli-
cated in potential patterns of impairment in economic decision-making 
across psychiatric diseases. 

In particular, we implemented a transdiagnostic meta-analysis using 
coordinate-based activation likelihood estimation (ALE) to integrate 
brain imaging results from diverse economic decision-making tasks, 
aiming to examine functional impairment during economic decision- 
making vulnerable to broad-spectrum psychopathology. This method 
avoids the variability and divergence of earlier findings from small 
sample sizes by statistically analyzing convergence across studies, 
providing a comprehensive perspective on a research topic (Fox, 2018; 
Gurevitch et al., 2018). Notably, activation network mapping—a novel 
and validated technique that maps activation foci to brain networks 
rather than local regions—was added to the current transdiagnostic 
meta-analysis (Darby et al., 2018, 2019; Feng et al., 2022; Peng et al., 
2022). Since complex symptoms are embedded in a large-scale brain 
network made up of heterogeneous regions, activation network map-
ping is an appropriate technique for examining their neurobiological 
foundation (Fox, 2018). Specifically, we examined the transdiagnostic 
patterns of brain regions/networks related to the decision stage and the 
outcome stage of decision-making behaviors, with the aim of revealing 
neural circuits underlying common impairment in general decision ca-
pacity across various psychiatric disorders. According to previous find-
ings, we hypothesized that transdiagnostic dysfunction manifests in 
crucial nodes of large-scale networks that subserve emotion, reward, 
and cognitive processing. 

2. Materials and methods 

2.1. Literature search and selection 

Systematic and comprehensive searches of the ISI Web of Science and 
PubMed databases were conducted in April 2023, following PRISMA 
procedures (Shamseer et al., 2015). The search terms were created by 
combining three types of relevant terms as follows: (1) imaging mo-
dalities: "fMRI" OR "magnetic resonance imaging" OR "PET" OR "positron 
emission tomography" OR "neuroimaging"; (2) economic 
decision-making: "delay discounting task" OR "Iowa Gambling Task" OR 
"Cambridge Risk Task" OR "Wheel of Fortune" OR "Lane Risk Taking 
Task" OR "Risky-Gains Decision-Making Task" OR "Two-choice card 
task" OR "Card-playing task" OR "Choice reversal task" OR "Two-choice 
prediction task" OR "Card decision task" OR "decision-making" OR "risk 
assessments" OR "risky choices" OR "gambling" OR "loss aversion" OR 
"uncertainty" OR "ambiguity" OR "probability" OR "prospect theory" OR 
"time preferences" OR "inter-temporal choice" OR "temporal 
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discounting" OR "revealed and real preferences" OR "substitution for 
pathogenetic goods" OR "expected utility function" OR "cost-benefit 
analysis" OR "exaggerated valuation of costs" OR "transferred money" OR 
"sensitivity to increasing gains and losses" OR "excessive present-or-
ientation" OR "valued-based" OR "markov decision process" OR "mod-
el-based" OR "model-free"; and (3) disorder diagnosis: "schizophrenia" 
OR "schizophreniform" OR "SCZD" OR "psychosis" OR "psychotic disor-
ders" OR "psychopathy" OR "psychopathic" OR "psychopath" OR 
"mentally disordered" OR "PCL-R" OR "Autism spectrum disorder" OR 
"ASD" OR "Asperger" OR "Asperger syndrome" OR "attention deficit hy-
peractivity disorder" OR "ADHD" OR "affective disorders" OR "bipolar 
disorder" OR "unipolar disorders" OR "mania" OR "manic disorder" OR 
"dissociative disorder" OR "dysthymia" OR "major depressive disorder" 
OR ‘MDD’ OR "depression" OR "disruptive mood regulation disorders" 
OR "dysthymia" OR "mood disorder" OR "generalized anxiety disorder" 
OR "GAD" OR "mood and anxiety disorders" OR "anxiety disorder" OR 
"panic disorder" OR "agoraphobia" OR "phobia" OR "obsessive--
compulsive disorder" and "OCD" OR "post-traumatic stress disorder" OR 
"stress disorder" OR "PTSD" OR "post-traumatic stress" OR "eating dis-
orders" OR "anorexia nervosa" OR "Bulimia nervosa" OR "binge and 
heavy drinking" OR "overweight" OR "obesity" OR "conduct disorder" OR 
"conduct problems" OR "disruptive behavior disorder" OR "oppositional 
defiant disorder" OR "intermittent explosive disorder" OR "callous un-
emotional" OR "disruptive behavior" OR "defiant behavior" OR "exter-
nalizing" OR "intermittent explosive" OR "substance abuse" OR 
"substance use disorder" OR "SUD" OR "cannabis" OR "marijuana" OR 
"marihuana" OR "THC" OR "tetrahydrocannabinol" OR "cigarette--
smoking" OR "nicotine" OR "Alcohol misuse" OR "Alcohol abuse" OR 
"Alcohol addiction" OR "heavy drinking" OR "binge drinking" OR 
"alcohol dependence" OR "Internet gaming disorder" OR "Internet 
addiction" OR "IGD" OR "antisocial personality disorder" OR "antisocial 
behavior" OR "antisocial" OR "borderline personality disorder" OR 
"BPD". The large number of keywords employed in the current study was 
to ensure a comprehensive search of related studies. Additionally, we 
investigated various other sources, such as (1) the BrainMap database 
(http://brainmap.org), (2) the bibliographies and citation indices of the 
previously selected papers, and (3) the reference lists of relevant reviews 
(e.g., Hauser et al., 2014; Lee, 2013; Robson et al., 2020), and (4) direct 
queries using the names of authors who appear regularly. 

The identified studies were further evaluated using the subsequent 
criteria. First, the study was published in a peer-reviewed English lan-
guage journal and presented empirical data. Second, subjects performed 
an economic decision-making task. Third, each study referred to at least 
one psychiatric disorder or at-risk population (e.g., relatives of psychi-
atric disorder or individuals with psychotic characteristics) versus con-
trol group comparisons on the decision or the outcome phases. During 
the decision phase, participants processed the experimental stimulus 
and pressed the keys to respond. During the outcome phase, participants 
were presented with the results of the current trial (i.e., feedback). 
Fourth, we limited the meta-analysis to research employing fMRI or PET, 
as well as research that presented whole-brain functional neuroimaging 
data instead of ROI analyses. Fifth, a general linear model based on 
parametric analyses or binary contrasts was used to produce the results. 
Sixth, a standardized stereotaxic space (Talairach or Montreal Neuro-
logical Institute, MNI) was used to display activations. It should be noted 
that for publications using Talairach coordinates, the icbm2tal algo-
rithm has been used for conversion into MNI coordinates (Lancaster 
et al., 2010). Lastly, participants did not have a history of neurological 
diseases (e.g., epilepsy, brain tumor, brain lesion, or meningitis). After 
applying these inclusion/exclusion criteria to search results, a total of 
136 experiments (i.e., contrasts) from 67 published fMRI publications 
were found (Fig. 1). 

2.2. Activation likelihood estimation (ALE) approach 

Using the ALE algorithm, a coordinate-based meta-analysis of pub-
lished fMRI investigations was performed (Eickhoff et al., 2017; Eickhoff 
et al., 2009). ALE assesses the convergence of published foci in Talairach 
or MNI space (Laird et al., 2005; Turkeltaub et al., 2002). According to 
ALE, reported foci are to be regarded as spatial probability distributions 
whose widths are experimentally approximated to account for the 
spatial uncertainty arising from the variation in neuroimaging data 
across participants and templates (Eickhoff et al., 2009). For each voxel 
included in every experiment, a modulated activation (MA) map is 
generated using the highest likelihood connected to any focus, which is 
inevitably the closest one (Turkeltaub et al., 2012). The updated ALE 
method has the benefit of avoiding the joint influence of several foci 
from a single experiment on the individual MA value of a particular 

Fig. 1. Diagram representing the flow of the meta-analysis’s study selection procedure. fMRI, functional magnetic resonance imaging; PET, positron emis-
sion tomography. 
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voxel. To generate an ALE map across experiments, the individual MA 
maps are combined using the highest likelihood related to any one focus 
for each voxel. Applying a non-linear histogram integration approach, 
this ALE map is evaluated against a null distribution of random spatial 
associations among experiments (Eickhoff et al., 2012; Turkeltaub et al., 
2012). Moreover, the contribution of each experiment was computed as 
the fraction of the ALE value accounted for by the given experiment 
contributing to the cluster (Eickhoff et al., 2016). To select significant 
clusters, we applied two more criteria based on the computed contri-
bution. To ensure that no single experiment dominates a cluster, each 
cluster must obtain contributions from at minimum two experiments. 
Additionally, neither the mean contribution of the most dominant 
experiment (MDE) nor the mean contribution of the two most dominant 
experiments (2MDEs) ought to surpass 50% or 80% (Eickhoff et al., 
2016). 

The published coordinates of brain regions linked to variations in 
economic decision-making between psychiatric conditions and healthy 
controls converged across various experiments employing the ALE al-
gorithm. Particularly, these meta-analytic techniques were used to 
converge the neural correlates of aberrant economic decision-making 
across psychiatric conditions (136 contrasts in total): (i) altered brain 
activity in psychiatric conditions compared to controls during decision 
phase (psychiatric conditions > controls or controls > psychiatric con-
ditions: 93 contrasts, 555 foci) (for a similar approach see McTeague 
et al., 2017); and (ii) altered brain activity in psychiatric conditions 
compared to controls during outcome phase (psychiatric conditions >
controls or controls > psychiatric conditions: 43 contrasts, 169 foci). We 
additionally conducted alternative analyses that only included clinical 
populations for both the decision (82 contrasts, 458 foci) and outcome 
(38 contrasts, 117 foci) phases in order to prove the reliability of the 
present findings. The results of the complementary analyses were 
illustrated in the supplementary material (see also supplementary re-
sults for details). 

2.3. Functional decoding for identified regions 

Functional decoding analyses were conducted based on the Neuro-
synth database (version 0.6) (Yarkoni et al., 2011) by utilizing codes 
from a series of IPython Notebooks (https://github.com/adelavega 
/neurosynth-lfc) to investigate which psychological topics were most 
pertinent to brain areas associated with differences between psychiatric 
conditions and healthy controls in economic decision-making converged 
across different experiments (de la Vega et al., 2018). With 11,406 
publications covering all angles of the reported neuroimaging papers, 
Neurosynth is a platform for large-scale fMRI meta-analysis (Yarkoni 
et al., 2011). The peak coordinates for every activation and frequency of 
words in the abstract of each fMRI study are stored in the Neurosynth 
database. Latent Dirichlet allocation topic modeling was utilized to 
identify psychological topics, which led to the discovery of 60 distinct 
topics on the basis of the co-occurrence of each term in the abstracts (de 
la Vega et al., 2018). Initially, we created six brain masks composed of 
areas found during the decision and outcome phases (three masks for the 
main results of psychiatric conditions and three masks for the supple-
mentary results of clinical populations). Two sets of studies were sub-
sequently chosen for each brain mask: those that failed to activate any 
voxels (inactive research) and those that activated at minimum 5% of 
the voxels within the mask (active research). Then, based on the loading 
of each psychological topic onto individual research, a naive Bayes 
classifier was trained to distinguish between these two sets of studies. 
The log of the ratio between the likelihood of each topic in inactive 
research and the likelihood of that topic in active research was employed 
to generate 60 log odds-ratio (LOR) values for each brain mask. After 
identifying the semantic content of the research, a LOR value above zero 
suggested that the related psychological theme was forecasting whether 
a study activated areas in a specific brain mask. Lastly, the significance 
level of the observed LOR values was ascertained using a 

permutation-based technique that involved rearranging research labels 
(i.e., active or inactive) 1000 times. Please note that the provided topics 
were limited to those that produced significant findings (p < 0.01) in 
false discovery rate (FDR) multiple comparisons. 

2.4. Lesion network analysis 

The lesion network analysis involves mapping lesion-induced 
symptoms to brain networks rather than local regions. This is ach-
ieved by combining lesion locations with maps of resting-state func-
tional connectivity (RSFC) derived from normal, nonsymptomatic 
populations (Boes et al., 2015; Darby et al., 2017). Specifically, the 
lesion network mapping process comprises the subsequent steps: (i) 
duplicating the volume of each lesion onto a reference brain; (ii) 
employing RSFC to assess the network of brain regions functionally 
linked to each lesion location; and (iii) revealing the overlap of networks 
connected to each lesion location as common network sites. A lesion 
network was identified for motivation-related symptoms in our earlier 
study (Feng et al., 2022). Within this network, the ventral striatum 
stands out as the central node, encompassing diverse lesion locations 
that result in functional abnormalities related to motivation, such as 
apathy and anhedonia. The current study further explored whether 
brain networks causally connected to motivational impairments coin-
cide with brain regions arising from decision-making deficiencies across 
neuropsychiatric disorders, given the crucial role of motivation-related 
processes in decision-making. 

2.5. Activation network mapping 

Activation network mapping was performed to examine whether 
brain activations from different experiments were restricted to the same 
network. This innovative method combines maps of RSFC with reported 
activation foci to map psychological constructs to brain networks 
instead of local regions. In our case, the activation network mapping can 
provide complementary evidence for the meta-analysis by providing 
information about the brain network rather than localized brain regions, 
helping to understand the potential connectivity among the heteroge-
neous brain regions (Peng et al., 2022). Such a network approach is 
particularly relevant to identifying neurobiological systems underlying 
human decision-making deficits as a complex and multidimensional 
construct. Indeed, rather than focusing on particular brain regions, there 
is growing recognition that human decision-making is best described in 
terms of interactions across large-scale brain networks consisting of 
dispersed brain locations (Feng et al., 2021). 

2.5.1. Participants 
The activation network mapping was performed on resting-state 

functional magnetic resonance imaging (rs-fMRI) images of 116 
healthy adult volunteers (57 males; 21.80 ± 2.41 years old; age range 
18–30; Beijing Normal University, China). Participants were instructed 
to close their eyes, remain still, and stay attentive without concentrating 
on any specific ideas during the rs-fMRI scan. Approved by the local 
Ethics Committee, the rs-fMRI study was performed in compliance with 
the Declaration of Helsinki. All participants provided written informed 
consent. They were all right-handed and had no history of neurological 
or mental illness. 

2.5.2. Resting-state fMRI data acquisition 
At the Beijing Normal University Imaging Center for Brain Research, 

functional images of the subjects in the resting state were collected using 
a Siemens TRIO 3 Tesla scanner. The rs-fMRI scan comprised 150 
contiguous volumes obtained through an echo-planar imaging sequence 
(axial slices, 33; slice thickness, 3.5 mm; interslice gap, 0.7 mm; TR, 
2000 ms; TE, 30 ms; flip angle, 90◦; voxel size, 3.5 × 3.5 × 3.5 mm3; 
FOV, 244 × 244 mm2). Moreover, a 3D sagittal T1-weighted magneti-
zation-prepared rapid acquisition with gradient-echo sequence was 
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employed to capture high-resolution structural images (sagittal slices, 
144; TR, 2530 ms; TE, 3.39 ms; slice thickness, 1.33 mm; voxel size, 1 ×
1 × 1.33 mm3; flip angle, 7◦; inversion time, 1100 ms; FOV, 256 × 256 
mm2). 

2.5.3. Resting-state fMRI data analysis 
The DPABI was used for neuroimaging data analyses (Yan et al., 

2016). As a consequence of participant adjustment to the scanning noise 
and signal equilibrium, the first 10 vol of the functional pictures were 
removed for signal equilibrium. Images were then realigned to account 
for head movement. Sixteen participants (8 males) were eliminated from 
data analyses due to head movements beyond the limit of translation of 
1.5 mm, rotation of 1.5◦, and average frame-wise displacement of 0.2 
mm throughout the scanning process (Power et al., 2012; Yan et al., 
2013). The structural brain images of the participants were first 
co-registered to their own mean functional images, and then they were 
segmented to normalize the functional images. Each participant’s 
functional images were normalized into the standard Montreal Neuro-
logical Institute space (MNI template, resampling voxel size was 2 × 2 ×
2 mm3) using the segmentation parameters. Subsequently, the time 
courses’ linear trends were eliminated, and each voxel’s time series 
underwent band-pass filtering (0.01–0.1 Hz) to lessen the impact of 
high-frequency physiological noise and low-frequency drift (Biswal 
et al., 1995; Zuo et al., 2010). Then, four nuisance variables were 
regressed out: (i) the global mean signal, (ii) the white matter (WM) 
signal, (iii) the cerebrospinal fluid signal (Fox et al., 2005; Snyder and 
Raichle, 2012), and (iv) 24 movement regressors, which included 
autoregressive models of motion comprising 6 head motion parameters, 
6 head motion parameters one time point prior, and the 12 corre-
sponding squared items (Friston et al., 1996). Time points with excessive 
motion were then censored to remove residual motion artifacts (Power 
et al., 2012). Lastly, an additional head motion control was applied. This 
resulted in volumes with an FD > 0.5 mm, as well as the volume before it 
and the two volumes after it, being categorized as 
micromovement-containing volumes. These volumes were then 
modeled as individual regressors in a nuisance covariate regression 
(Power et al., 2014; Yan et al., 2013). 

2.5.4. Activation network mapping analysis 
The activation network mapping involved the following steps (Peng 

et al., 2022): (i) For each experiment included in a given analysis (i.e., 
decision phase, outcome phase, or both phases), 6-mm-radius spheres 
centered on all reported foci/coordinates were created and then merged 
within the experiment to produce a single "activation seed". (ii) We 
defined activation network maps as brain regions functionally linked to 
the activation seed by applying seed-based RSFC on the resting-fMRI 
data. Specifically, the Pearson’s correlation coefficient between the 
mean BOLD signals from the activation seed and the rest of the brain 
voxels was determined for each participant. (iii) Fisher z maps were 
generated from Pearson’s correlation coefficients acquired at each voxel 
to demonstrate the level of connection between each ROI and voxel. (iv) 
A mean Fisher z map was produced for each experiment by averaging 
the Fisher z maps of all 100 subjects. (v) One-sample t-tests were 
employed to compare these mean maps of all experiments with zero. The 
t-tests were thresholded at a voxel-level Family-Wise Error (FWE) 
correction of p < .05 and required a minimum cluster volume of 20 
voxels unless specified otherwise. Then activation network t maps were 
obtained and the resulting clusters represented brain regions that 
exhibited significant connectivity to the activation seeds across multiple 
experiments. 

2.6. Leave-one-experiment-out (LOEO) analysis 

Additional analyses were implemented to validate the results of the 
conventional ALE meta-analysis approach. For every ALE meta-analysis, 
an LOEO analysis was conducted to ensure the conclusions drawn from 

the primary meta-analysis were not influenced by the coordinates from a 
single experiment. One experiment from each fold was eliminated and 
the rest of the N-1 experiments were subjected to the ALE meta-analysis. 
Aiming to determine the brain regions substantially engaged, we per-
formed conjunction analysis on the ALE results for each fold. In the 
LOEO study, the indicated brain regions were identified in more than 
80% of the folds. We employed these analyses to corroborate the pri-
mary results of the ALE meta-analysis. 

3. Results 

3.1. Studies included in meta-analyses 

A total of 68 PET/fMRI studies (136 experiments) were included in 
the present meta-analyses. Specifically, the present meta-analysis 
included the following set of clinical/at-risk populations: (1) 
addiction-related populations, consisting of patients with alcohol 
dependence, binge eating disorder, cocaine-dependence, pathological 
gambling, obesity, marijuana users, and smokers (70 experiments); (2) 
mood/anxiety-related populations, consisting of patients with obsessive 
compulsive disorder, anxiety disorders, major depressive disorder, bi-
polar disorder, and people with rumination symptoms and early life 
stress (19 experiments); (3) behavior-related populations, including 
patients with borderline personality, attention deficit hyperactivity 
disorder, external disorder (mainly oppositional defiant disorder), 
autism spectrum disorder, and people vulnerable to antisocial behavior 
(38 experiments); and (4) psychosis-related populations, including 
schizophrenia patients and people with subclinical psychotic experi-
ences and risk to develop psychosis (9 experiments). Moreover, the 
present meta-analysis comprised the following experimental paradigms: 
(1) delay discounting task (26 experiments); (2) risk-related task (93 
experiments), including balloon analog risk task, cup task, Iowa 
gambling task, card gambling task, financial decision-making task, 
Rogers decision- making task, wheel of fortune task, win-and-losses task 
and other similar risk-related tasks; (3) passive avoidance task (10 ex-
periments); (4) effort-expenditure for rewards task (5 experiments); and 
(5) tasks associated with sunk costs (2 experiments). 

3.2. Main ALE meta-analyses results 

For the decision phase, examining the contrasts of aberrant activa-
tion (i.e., pooling across patterns of hyper- and hypo-activation) in 
psychiatric conditions compared to controls revealed consistent maxima 
in the right ventral striatum (VS) (TFCE, corrected of p < 0.05, Fig. 2A & 
Table 1). Cluster 1 was derived from ten of the ninety-three contrasts 
(MDE = 39.58%; 2MDE = 75.51%) and cluster 2 was derived from 
fifteen of the ninety-three contrasts (MDE = 12.84%, 2MDE = 22.55%) 
in the right VS. According to the functional decoding analysis, the ob-
tained cluster was primarily linked to food, sequences, reward, decision- 
making, and learning processes (Fig. 3A). Regarding the outcome phase, 
consistent maxima were revealed in right VS and bilateral subgenual 
anterior cingulate cortex (sgACC) (TFCE, corrected of p < 0.05, Fig. 2B & 
Table 1). The cluster in the right sgACC was derived from seven out of 
forty-three contrasts (MDE = 26.66%; 2MDE = 50.10%), whereas the 
cluster in the left sgACC was derived from six out of forty-three contrasts 
(MDE = 36.42%, 2MDE = 69.05%). The cluster in the right VS was 
derived from five of the forty-three contrasts (MDE = 33.92%, 2MDE =
66.51%). The identified clusters were related to the functions of food, 
reward, fear, game, taste, smoking, learning, and decision-making pro-
cesses revealed by the functional decoding analysis (Fig. 3B). As for 
contrasts in both decision and outcome phases, consistent maxima were 
revealed in right VS, right ventrolateral prefrontal cortex (vlPFC), right 
thalamus, and bilateral dorsal anterior cingulate cortex (dACC) (TFCE, 
corrected of p < 0.05, Fig. 2C & Table 1). The cluster in the right VS was 
derived from twenty-seven out of 136 contrasts (MDE = 9.18%, 2MDE =
17.74%). The cluster in the right vlPFC was derived from thirteen out of 
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136 contrasts (MDE = 23.56%, 2MDE = 45.74%). The cluster in the 
right thalamus was derived from thirteen out of 136 contrasts (MDE =
37.86%, 2MDE = 72.68%). The cluster in the bilateral dACC was derived 
from eight out of 136 contrasts (MDE = 31.24%, 2MDE = 61.06%). The 
identified clusters were related to food, sequences, reward, pain, fear, 
decision-making, and learning processes, according to the functional 
decoding analysis (Fig. 3C). Notably, the results of the LOEO approach 
corroborated the main findings of main ALE meta-analysis (see Fig. S4- 
S5 & Supplementary Results for details). 

3.3. Conjunctions with lesion brain network 

The conjunction analysis revealed overlaps in right VS between the 
lesion brain network causing motivation-related symptoms and the 

brain regions identified with the aberrant activation of the decision 
phase (Fig. 4A & Table 2). Similarly, in the outcome phase, right VS was 
also found in the conjunction analysis (Fig. 4B & Table 2). Furthermore, 
when considering both decision and outcome processes, overlaps in the 
right VS and thalamus were found (Fig. 4C & Table 2). 

3.4. Results of activation network mapping 

The ANM revealed brain systems commonly engaged by different 
phases. For the decision phase, the activation network mapping analysis 
revealed the right dorsal anterior cortex, bilateral striatum extending to 
the insula, and bilateral extra-nuclear extending to striatum (p (FWE) <
0.05 at the voxel level, Fig. 5A & Table 3). For the outcome phase, the 
right sgACC, right striatum extending to the insula and amygdala, and 

Fig. 2. Significant clusters from the meta-analysis in fMRI/PET studies of (A) the decision-making phase, (B) the outcome phase, and (C) both decision-making and 
outcome phases (aberrant activation in clinical/at-risk conditions relative to controls). The significant clusters were found using Threshold-Free Cluster Enhancement 
(TFCE) at p < 0.05. L, left; R, right; VS, ventral striatum; vlPFC, ventrolateral prefrontal cortex; dACC, dorsal anterior cingulate cortex; sgACC, subgenual anterior 
cingulate cortex. 
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left insula were identified (p (FWE) < 0.05 at the cluster level, with the 
cluster-defining threshold of p < 0.0001 (uncorrected), Fig. 5B & 
Table 3). Moreover, when considering both the decision and outcome 
processes together, the activation network mapping analysis revealed 
bilateral striatum extending to the dorsal anterior cortex and insula and 
right extra-nuclear extending to striatum (p (FWE) < 0.05 at the voxel 
level, Fig. 5C & Table 3). Consequently, the activation network mapping 
results were consistent with the findings of the ALE meta-analysis. 

4. Discussion 

Making appropriate decisions plays a key role in human life, but the 
capacity is often impaired in many psychiatric disorders. The present 
meta-analysis aimed to uncover the common alterations in the neuro-
biological processes underlying various economic decision-making tasks 
across psychiatric conditions, leveraging extensive brain imaging 
studies that employ a range of economic experimental paradigms among 

diverse clinical/at-risk populations. We found a transdiagnostic pattern 
of functional alterations in the VS, sgACC, dACC, vlPFC, and thalamus, 
which are key nodes of a large-scale network typically associated with 
reward and emotional processing. Specifically, there is aberrant acti-
vation in the VS during the decisions phase as well as aberrant activation 
in the VS and sgACC during the outcomes phase across psychiatric 
conditions. Moreover, alterations in the VS, dACC, vlPFC, and thalamus 
activity were found among psychiatric conditions compared with 
healthy controls across both decision and outcome stages. Furthermore, 
we identified correspondence in the VS between brain networks impli-
cated in motivational deficits and the brain regions associated with 
decision-making deficits present in diverse neuropsychiatric conditions. 
Lastly, our findings were further corroborated by the activation network 
mapping analysis, which demonstrated that activation foci associated 
with decision-making deficits across neuropsychiatric conditions are 
components of a distributed brain network with the VS, sgACC, dACC, 
and insula as key nodes. Collectively, dysfunction in a general economic 
decision-making capacity across psychiatry conditions may be rooted in 
disruptions of the “common core” of emotion- and reward-related 
processing. 

The present results support Zald and Lahey’s (2017) hierarchical 
model of psychopathology. According to the model, there are four levels 
in an ordered structure that comprise psychopathological symptoms: 
individual symptoms, first-order dimensions that resemble traditional 
diagnoses, broader second-order factors that include internalizing vs. 
externalizing, and a general psychopathology factor, also known as the 
p-factor. (Lahey et al., 2017; Zald and Lahey, 2017). Thus, shared al-
terations in the activity of key nodes in emotion- and reward-related 
networks may indicate higher-order dimension neuropsychological 
markers that transcend specific diagnoses (Husain and Roiser, 2018; 
Knutson and Heinz, 2015; Zald and Lahey, 2017). In accordance with 
this conjecture, recent behavioral evidence has suggested 
decision-making capacity in multiple choice tasks is supported by a 
similar cognitive construct (Moutoussis et al., 2021), which accounts for 
the individual differences in psychiatric conditions, such as abnormal 
cognitive processes and inadequate social function (Moutoussis et al., 
2021). Our findings extend this behavioral evidence by revealing 
transdiagnostic alterations in emotion- and reward-related processing 
across a variety of decision-making tasks. In short, this work provides 
the first transdiagnostic meta-analytic evidence of how complex 
behavioral processes are compromised in psychiatric conditions. 

Specifically, the current findings identified common neural 
dysfunction in areas related to emotional and reward processing across 
psychiatric conditions in economic decision-making. The identified 
areas, consisting of the ACC, thalamus, and VS, are critical for deter-
mining whether external stimuli are salient or relevant from a motiva-
tional perspective (William et al., 2007). The emotional and 
motivational signals encoded in these regions are important in regu-
lating human decision-making across diverse contexts (Gu et al., 2019; 
Levy and Glimcher, 2012; Rangel et al., 2008), such that dysfunction in 

Table 1 
Significant clusters from the meta-analysis of individual differences in fMRI 
studies (aberrant activation in clinical/at-risk conditions relative to controls).  

Laterality Brain Regions BA MNI Coordinates 
(mm) 

TFCE 
Score 

Cluster 
Size 

(mm3) 
x y z 

Group differences in decision phase (hyper-activation/hypo-activation) 
R ventral 

striatum 
– 14 12 − 4 367.107 184 

R ventral 
striatum 

– 14 24 4 505.338 1648 

Group differences in outcome phase (hyper-activation/hypo-activation) 
L/R subgenual 

anterior 
cingulate 
cortex 

25 0 12 − 12 298.611 392 

L subgenual 
anterior 
cingulate 
cortex 

24 − 10 30 − 8 293.53 120 

R ventral 
striatum 

– 10 12 0 309.408 320 

Group differences in both decision and outcome phases (hyper-activation/hypo- 
activation) 

R ventral 
striatum 

– 8 14 6 697.312 4272 

R ventrolateral 
prefrontal 
cortex 

10 20 54 4 410.583 280 

R thalamus – 14 − 8 12 367.754 144 
R/L dorsal anterior 

cingulate 
cortex 

32 0 36 22 360.266 48 

The significant clusters were found using Threshold-Free Cluster Enhancement 
(TFCE) at p < 0.05. L, left; R, right. 

Fig. 3. Functional decoding for clusters identified by meta-analyses of group differences at decision phase (A), outcome phase (B), or both (C).  
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these regions often results in decision-making deficits commonly present 
in psychiatric conditions (Lee, 2013; Robson et al., 2020). Consistent 
with the present results, prior research has recognized common struc-
tural and functional disruptions in salience network nodes across 
various psychiatric conditions (Feng et al., 2022; Goodkind et al., 2015; 
Li et al., 2020; McTeague et al., 2020). For example, there are trans-
diagnostic alterations in the VS while anticipating both reward and loss 
(Feng et al., 2022). Similarly, McTeague et al. (2020) identified common 
disruptions of the amygdala, thalamus, and vlPFC in emotional pro-
cessing tasks. However, the present research is the first to demonstrate 
disruptions of emotion-related processes in human economic 
decision-making across psychiatric conditions. 

Our meta-analytic findings were further complemented by the results 

of activation and lesion network mapping analyses, both of which map 
psychological constructs to large-scale networks instead of isolated 
brain regions. In particular, these analyses indicated that the identified 
regions (e.g., VS) represent key nodes in a large-scale network composed 
of numerous heterogeneous brain regions, which show common dis-
ruptions across psychiatric conditions and play a causal role in moti-
vational functioning. These findings echo the assertion holding that the 
transdiagnostic functional construct or higher-order psychopathology 
factors are embedded in large-scale network disruptions as opposed to 
localized dysfunctions in specific nodes (Buckholtz and 
Meyer-Lindenberg, 2012; Zald and Lahey, 2017). In short, the patho-
physiology of decision-making impairments (e.g., impulsivity and 
anhedonia) across categories of mental illness may be explained by a 

Fig. 4. Brain regions derived from the conjunction analysis with lesion network causing motivation-related symptoms. (A) Overlaps identified for the aberrant 
activation of the decision phase. (B) Overlaps identified for the aberrant activation of the outcome phase. (C) Overlaps identified for the aberrant activation of both 
decision and outcome phases. 
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brain phenotype that underlies common disruptions in a large-scale 
network associated with emotion and reward processing, which en-
compasses various regions of the brain that collaborate to promote 
decision-making. 

It is important to acknowledge that this study has certain limitations. 
First, the current study did not include brain imaging studies on social 
decision-making, given the limited number of studies available. Un-
doubtedly, social decision-making impairments play a significant role in 
the comprehension of psychopathology (Báez-Mendoza et al., 2021), 
hence, this topic should be saved for further research; for example, 
exploring whether there is common or differential brain dysfunction 
between economic and social decision-making across psychiatric con-
ditions. Second, the insufficient number of studies for each psychiatric 
condition/task paradigm prevented the potential for investigating brain 

alterations specific to a diagnosis/task (Barch, 2020; Fusar-Poli, 2019), 
yet future meta-analyses will have greater statistical power to examine 
both common and unique abnormalities because the literature on the 
applications of economic games in psychiatry is expanding at a rapid 
pace. Third, further research on intervention studies is needed to 
determine if the transdiagnostic alterations in brain function represent 
the cause or consequence of psychopathology. 

Regardless of these limitations, our study provides the first meta- 
analytic evidence of the common functional disruptions of emotion- 
and reward-related networks in economic decision-making across mul-
tiple clinical/at-risk populations. These findings suggest that emotion- 
and reward-related processing represent key neuropsychological pro-
cesses that are important for decision-making, and their dysfunctions 
give rise to deficits in a general decision-making capacity. In other 
words, a general decision-making capacity may be strongly constrained 
by a few core neuropsychological components such as emotional pro-
cessing and valuation. Our findings thus provide possible candidate 
brain phenotypes for future intervention studies, which may prove 
broad use across types of psychopathology. 
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Báez-Mendoza, R., Vázquez, Y., Mastrobattista, E.P., Williams, Z.M., 2021. Neuronal 
circuits for social decision-making and their clinical implications. Front. Neurosci. 
15, 720294 https://doi.org/10.3389/fnins.2021.720294. 

Barch, D.M., 2020. What does it mean to be transdiagnostic and how would we know? 
Am. J. Psychiatry 177 (5), 370–372. https://doi.org/10.1176/appi. 
ajp.2020.20030243. 

Berridge, K.C., O’Doherty, J.P., 2014. From experienced utility to decision utility. 
Neuroeconomics 335–351. Academic Press.  

Biswal, B., Zerrin Yetkin, F., Haughton, V.M., Hyde, J.S., 1995. Functional connectivity 
in the motor cortex of resting human brain using echo-planar mri. Magn. Reson. 
Med. 34 (4), 537–541. https://doi.org/10.1002/mrm.1910340409. 

Blair, R.J.R., Bashford-Largo, J., Zhang, R., Lukoff, J., Elowsky, J.S., Leibenluft, E., 
Blair, K.S., 2020. Temporal discounting impulsivity and its association with conduct 
disorder and irritability. J. Child Adolesc. Psychopharmacol. 30 (9), 542–548. 
https://doi.org/10.1089/cap.2020.0001. 

Boes, A.D., Prasad, S., Liu, H., Liu, Q., Pascual-Leone, A., Caviness Jr, V.S., Fox, M.D, 
2015. Network localization of neurological symptoms from focal brain lesions. Brain 
138 (10), 3061–3075. 

Brand, M., Franke-Sievert, C., Jacoby, G.E., Markowitsch, H.J., Tuschen-Caffier, B., 2007. 
Neuropsychological correlates of decision making in patients with bulimia nervosa. 
Neuropsychology 21 (6), 742–750. https://doi.org/10.1037/0894-4105.21.6.742. 

Buckholtz, J.W., Meyer-Lindenberg, A., 2012. Psychopathology and the human 
connectome: toward a transdiagnostic model of risk for mental illness. Neuron 74 
(6), 990–1004. https://doi.org/10.1016/j.neuron.2012.06.002. 

Cai, M., Wang, R., Liu, M., Du, X., Xue, K., Ji, Y., Qin, W., 2022. Disrupted local 
functional connectivity in schizophrenia: an updated and extended meta-analysis. 
Schizophrenia 8 (1), 93. 

Carlisi, C.O., Norman, L., Murphy, C.M., Christakou, A., Chantiluke, K., Giampietro, V., 
Rubia, K., 2017. Shared and disorder-specific neurocomputational mechanisms of 
decision-making in autism spectrum disorder and obsessive-compulsive disorder. 
Cereb. Cortex 27 (12), 5804–5816. https://doi.org/10.1093/cercor/bhx265. 

Darby, R.R., Joutsa, J., Burke, M.J., Fox, M.D., 2018. Lesion network localization of free 
will. Proc. Natl. Acad. Sci. 115 (42), 10792–10797. https://doi.org/10.1073/ 
pnas.1814117115. 

Darby, R.R., Joutsa, J., Fox, M.D., 2019. Network localization of heterogeneous 
neuroimaging findings. Brain 142 (1), 70–79. https://doi.org/10.1093/brain/ 
awy292. 

Darby, R.R., Laganiere, S., Pascual-Leone, A., Prasad, S., Fox, M.D., 2017. Finding the 
imposter: brain connectivity of lesions causing delusional misidentifications. Brain 
140 (2), 497–507. 

de la Vega, A., Yarkoni, T., Wager, T.D., Banich, M.T., 2018. Large-scale meta-analysis 
suggests low regional modularity in lateral frontal cortex. Cereb. Cortex 28 (10), 
3414–3428. https://doi.org/10.1093/cercor/bhx204. 

Eickhoff, S.B., Bzdok, D., Laird, A.R., Kurth, F., Fox, P.T., 2012. Activation likelihood 
estimation meta-analysis revisited. Neuroimage 59 (3), 2349–2361. https://doi.org/ 
10.1016/j.neuroimage.2011.09.017. 

Eickhoff, S.B., Laird, A.R., Fox, P.M., Lancaster, J.L., Fox, P.T., 2017. Implementation 
errors in the GingerALE Software: description and recommendations. Hum. Brain 
Mapp. 38 (1), 7–11. https://doi.org/10.1002/hbm.23342. 

Eickhoff, S.B., Laird, A.R., Grefkes, C., Wang, L.E., Zilles, K., Fox, P.T., 2009. Coordinate- 
based activation likelihood estimation meta-analysis of neuroimaging data: a 
random-effects approach based on empirical estimates of spatial uncertainty. Hum. 
Brain Mapp. 30 (9), 2907–2926. https://doi.org/10.1002/hbm.20718. 

Eickhoff, S.B., Nichols, T.E., Laird, A.R., Hoffstaedter, F., Amunts, K., Fox, P.T., 
Eickhoff, C.R., 2016. Behavior, sensitivity, and power of activation likelihood 
estimation characterized by massive empirical simulation. Neuroimage 137, 70–85. 

Endrass, T., Ullsperger, M., 2021. Decision-making as transdiagnostic construct for 
mental health research. Neuron 109 (12), 1912–1914. https://doi.org/10.1016/j. 
neuron.2021.05.035. 

Enkavi, A.Z., Eisenberg, I.W., Bissett, P.G., Mazza, G.L., MacKinnon, D.P., Marsch, L.A., 
Poldrack, R.A., 2019. Large-scale analysis of test-retest reliabilities of self-regulation 
measures. Proc. Natl. Acad. Sci. U.S.A., 116 (12), 5472–5477. https://doi.org/ 
10.1073/pnas.1818430116. 

Fairchild, G., van Goozen, S.H., Stollery, S.J., Aitken, M.R., Savage, J., Moore, S.C., 
Goodyer, I.M., 2009. Decision making and executive function in male adolescents 
with early-onset or adolescence-onset conduct disorder and control subjects. Biol. 
Psychiatry 66 (2), 162–168. https://doi.org/10.1016/j.biopsych.2009.02.024. 

Feng, C., Eickhoff, S.B., Li, T., Wang, L., Becker, B., Camilleri, J.A., Luo, Y., 2021. 
Common brain networks underlying human social interactions: Evidence from large- 
scale neuroimaging meta-analysis. Neurosci. Biobehav. Rev. 126, 289–303. 

Feng, C., Huang, W., Xu, K., Stewart, J.L., Camilleri, J.A., Yang, X., Eickhoff, S.B., 2022. 
Neural substrates of motivational dysfunction across neuropsychiatric conditions: 
evidence from meta-analysis and lesion network mapping. Clin. Psychol. Rev. 96, 
102189 https://doi.org/10.1016/j.cpr.2022.102189. 

Fox, M.D., 2018. Mapping symptoms to brain networks with the human connectome. 
N. Engl. J. Med. 379 (23), 2237–2245. 

Fox, M.D., Snyder, A.Z., Vincent, J.L., Corbetta, M., Van Essen, D.C., Raichle, M.E., 2005. 
The human brain is intrinsically organized into dynamic, anticorrelated functional 
networks. Proc. Natl. Acad. Sci. 102 (27), 9673–9678. https://doi.org/10.1073/ 
pnas.0504136102. 

Table 3 
Significant clusters from the activation network mapping (aberrant activation in 
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Laterality Brain 
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intensity 
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Size 

(mm3) 
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Activation network of the seed of decision phase 
L/R striatum 

extending to 
insula 

– − 4 10 10 7.972 45,792 

R dorsal 
anterior 
cingulate 
cortex 

24 2 14 22 6.739 16,432 

L extra-nuclear 
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– 24 − 36 20 7.245 776 

Activation network of the seed of outcome phase 
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R extra-nuclear 
extending to 
striatum 
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Thresholds: decision phase and both decision-making and outcome phases: p 
(FWE) < 0.05 at the voxel level, outcome phase: p (FWE) < 0.05 at the cluster 
level, with cluster-definning threshold of p (uncorrected) < 0.0001. L, left; R, 
right. 
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