001026363 001__ 1026363
001026363 005__ 20250204113855.0
001026363 0247_ $$2doi$$a10.1007/s12021-024-09665-7
001026363 0247_ $$2ISSN$$a1539-2791
001026363 0247_ $$2ISSN$$a1559-0089
001026363 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-03394
001026363 0247_ $$2pmid$$a38713426
001026363 0247_ $$2WOS$$aWOS:001215338300001
001026363 037__ $$aFZJ-2024-03394
001026363 082__ $$a540
001026363 1001_ $$0P:(DE-Juel1)190195$$aSzczepanik, Michał$$b0$$eCorresponding author$$ufzj
001026363 245__ $$aTeaching Research Data Management with DataLad: A Multi-year, Multi-domain Effort
001026363 260__ $$aNew York, NY$$bSpringer$$c2024
001026363 3367_ $$2DRIVER$$aarticle
001026363 3367_ $$2DataCite$$aOutput Types/Journal article
001026363 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1732262209_1668
001026363 3367_ $$2BibTeX$$aARTICLE
001026363 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001026363 3367_ $$00$$2EndNote$$aJournal Article
001026363 520__ $$aResearch data management has become an indispensable skill in modern neuroscience. Researchers can benefit from following good practices as well as from having proficiency in using particular software solutions. But as these domain-agnostic skills are commonly not included in domain-specific graduate education, community efforts increasingly provide early career scientists with opportunities for organised training and materials for self-study. Investing effort in user documentation and interacting with the user base can, in turn, help developers improve quality of their software. In this work, we detail and evaluate our multi-modal teaching approach to research data management in the DataLad ecosystem, both in general and with concrete software use. Spanning an online and printed handbook, a modular course suitable for in-person and virtual teaching, and a flexible collection of research data management tips in a knowledge base, our free and open source collection of training material has made research data management and software training available to various different stakeholders over the past five years.
001026363 536__ $$0G:(DE-HGF)POF4-5254$$a5254 - Neuroscientific Data Analytics and AI (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001026363 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001026363 7001_ $$0P:(DE-Juel1)178612$$aWagner, Adina S.$$b1$$ufzj
001026363 7001_ $$0P:(DE-Juel1)187419$$aHeunis, Stephan$$b2$$ufzj
001026363 7001_ $$0P:(DE-Juel1)178653$$aWaite, Laura K.$$b3$$ufzj
001026363 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon B.$$b4$$ufzj
001026363 7001_ $$0P:(DE-Juel1)177087$$aHanke, Michael$$b5$$ufzj
001026363 773__ $$0PERI:(DE-600)2099780-2$$a10.1007/s12021-024-09665-7$$p635-645$$tNeuroinformatics$$v22$$x1539-2791$$y2024
001026363 8564_ $$uhttps://juser.fz-juelich.de/record/1026363/files/s12021-024-09665-7.pdf$$yOpenAccess
001026363 8767_ $$d2024-09-11$$eHybrid-OA$$jDEAL
001026363 909CO $$ooai:juser.fz-juelich.de:1026363$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
001026363 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190195$$aForschungszentrum Jülich$$b0$$kFZJ
001026363 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178612$$aForschungszentrum Jülich$$b1$$kFZJ
001026363 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187419$$aForschungszentrum Jülich$$b2$$kFZJ
001026363 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178653$$aForschungszentrum Jülich$$b3$$kFZJ
001026363 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b4$$kFZJ
001026363 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)131678$$a HHU Düsseldorf$$b4
001026363 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177087$$aForschungszentrum Jülich$$b5$$kFZJ
001026363 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)177087$$a HHU Düsseldorf$$b5
001026363 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5254$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001026363 9141_ $$y2024
001026363 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001026363 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001026363 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001026363 915pc $$0PC:(DE-HGF)0113$$2APC$$aDEAL: Springer Nature 2020
001026363 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-20
001026363 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-20
001026363 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001026363 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-20
001026363 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2023-08-20$$wger
001026363 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001026363 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEUROINFORMATICS : 2022$$d2025-01-06
001026363 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-06
001026363 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-06
001026363 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-06
001026363 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-01-06
001026363 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-06
001026363 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2025-01-06
001026363 920__ $$lyes
001026363 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
001026363 980__ $$ajournal
001026363 980__ $$aVDB
001026363 980__ $$aUNRESTRICTED
001026363 980__ $$aI:(DE-Juel1)INM-7-20090406
001026363 980__ $$aAPC
001026363 9801_ $$aAPC
001026363 9801_ $$aFullTexts