001     10264
005     20240708132726.0
024 7 _ |2 pmid
|a pmid:22969472
024 7 _ |2 pmc
|a pmc:PMC3435599
024 7 _ |2 DOI
|a 10.1007/s11666-010-9468-1
024 7 _ |2 WOS
|a WOS:000277027000008
037 _ _ |a PreJuSER-10264
041 _ _ |a eng
082 _ _ |a 670
084 _ _ |2 WoS
|a Materials Science, Coatings & Films
100 1 _ |a Steinke, T.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB84038
245 _ _ |a Process Design and Monitoring for Plasma Sprayed Abradable Coatings
260 _ _ |a Boston, Mass.
|b Springer
|c 2010
300 _ _ |a 756-764
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Journal of Thermal Spray Technology
|x 1059-9630
|0 12482
|y 4
|v 19
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Abradable coatings in compressor and high-pressure stages of gas turbines must provide specific hardness and porosity values to achieve an optimal cut-in of the blade tips. A fractional factorial experimental plan was designed to investigate the influence of the plasma spraying parameters argon flow rate, current, spraying distance and powder feed rate on these properties of magnesia spinel. Based on the results, magnesia spinel coatings with low (~400 HV0.5), medium (~600 HV0.5) and high hardness (~800 HV0.5) could be reliably manufactured. Further incursion rig tests confirmed the dependence of the rub-in behavior and abradability on the coating characteristics and process parameters, respectively. Process monitoring was also applied during plasma spraying of magnesia spinel abradables on batches of turbine components. The recorded particle characteristics and coating properties showed a good reproducibility of the spraying process
536 _ _ |a Rationelle Energieumwandlung
|c P12
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK402
|x 0
588 _ _ |a Dataset connected to Web of Science, Pubmed
653 2 0 |2 Author
|a coatings for engine components
653 2 0 |2 Author
|a coatings for gas turbine components
653 2 0 |2 Author
|a influence of spray parameters
653 2 0 |2 Author
|a porosity of coatings
653 2 0 |2 Author
|a PS microstructures
653 2 0 |2 Author
|a TBC topcoats
700 1 _ |a Mauer, G.
|b 1
|u FZJ
|0 P:(DE-Juel1)129633
700 1 _ |a Vaßen, R.
|b 2
|u FZJ
|0 P:(DE-Juel1)129670
700 1 _ |a Stöver, D.
|b 3
|u FZJ
|0 P:(DE-Juel1)129666
700 1 _ |a Roth-Fagaraseanu, D.
|b 4
|0 P:(DE-HGF)0
700 1 _ |a Hancock, M.
|b 5
|0 P:(DE-HGF)0
773 _ _ |a 10.1007/s11666-010-9468-1
|g Vol. 19, p. 756-764
|p 756-764
|q 19<756-764
|0 PERI:(DE-600)2047715-6
|t Journal of thermal spray technology
|v 19
|y 2010
|x 1059-9630
856 7 _ |2 Pubmed Central
|u http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3435599
909 C O |o oai:juser.fz-juelich.de:10264
|p VDB
913 1 _ |k P12
|v Rationelle Energieumwandlung
|l Rationelle Energieumwandlung
|b Energie
|0 G:(DE-Juel1)FUEK402
|x 0
913 2 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|2 G:(DE-HGF)POF3-100
|v Methods and Concepts for Material Development
|x 0
914 1 _ |y 2010
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k IEF-1
|l Werkstoffsynthese und Herstellungsverfahren
|d 30.09.2010
|g IEF
|0 I:(DE-Juel1)VDB809
|x 0
970 _ _ |a VDB:(DE-Juel1)120526
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013
981 _ _ |a I:(DE-Juel1)IEK-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21