001     1026448
005     20250204113855.0
024 7 _ |a 10.1016/j.electacta.2024.144360
|2 doi
024 7 _ |a 0013-4686
|2 ISSN
024 7 _ |a 1873-3859
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-03397
|2 datacite_doi
024 7 _ |a WOS:001240580700001
|2 WOS
037 _ _ |a FZJ-2024-03397
082 _ _ |a 540
100 1 _ |a Ali, Haider Adel
|0 P:(DE-Juel1)190784
|b 0
|e First author
245 _ _ |a A comparison between physics-based Li-ion battery models
260 _ _ |a New York, NY [u.a.]
|c 2024
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1719814552_15364
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Physics-based electrochemical battery models, such as the Doyle-Fuller-Newman (DFN) model, are valuable tools for simulating Li-ion battery behavior and understanding internal battery processes. However, the complexity and computational demands of such models limit their applicability for battery management systems and long-term aging simulations. Reduced-order models (ROMs), such as the Extended Single Particle Model (ESPM), Single Particle Model (SPM) and Polynomial and Padé approximations, here all referred to as simplifications, lead to faster computational speeds. Choosing the appropriate simplification method for a specific cell type and operating condition is a challenge. This study investigates the simulation accuracy and calculation speed of various simplifications for high-energy (HE) and high-power (HP) batteries at different current loading conditions and compares those to the full-order DFN model. The results indicate that among the ROMs, the ESPM consistently offers the best combination of high computational speed and relatively good accuracy in most conditions in comparison to the full-order DFN model. Among the approximations, higher-order polynomial approximation, third and fourth-order Padé approximation perform the best in terms of accuracy. The higher-order polynomial approximation shows an advantage in terms of computing speed, while the fourth-order Padé approximation achieves the highest overall accuracy among the different approximations.
536 _ _ |a 1223 - Batteries in Application (POF4-122)
|0 G:(DE-HGF)POF4-1223
|c POF4-122
|f POF IV
|x 0
536 _ _ |a LLEC::VxG - Integration von "Vehicle-to-grid" (BMBF-03SF0628)
|0 G:(DE-Juel1)BMBF-03SF0628
|c BMBF-03SF0628
|x 1
536 _ _ |a BMBF 13XP0530B - ALIBES: Aluminium-Ionen Batterie für Stationäre Energiespeicher (13XP0530B)
|0 G:(BMBF)13XP0530B
|c 13XP0530B
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Raijmakers, Luc
|0 P:(DE-Juel1)176196
|b 1
|e Corresponding author
700 1 _ |a Chayambuka, Kudakwashe
|0 P:(DE-Juel1)186070
|b 2
700 1 _ |a Danilov, Dmitri
|0 P:(DE-Juel1)173719
|b 3
700 1 _ |a Notten, Peter H. L.
|0 P:(DE-Juel1)165918
|b 4
700 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 5
|u fzj
773 _ _ |a 10.1016/j.electacta.2024.144360
|g Vol. 493, p. 144360 -
|0 PERI:(DE-600)1483548-4
|p 144360 -
|t Electrochimica acta
|v 493
|y 2024
|x 0013-4686
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1026448/files/1-s2.0-S0013468624006029-main.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1026448/files/1-s2.0-S0013468624006029-main.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1026448/files/1-s2.0-S0013468624006029-main.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1026448/files/1-s2.0-S0013468624006029-main.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1026448/files/1-s2.0-S0013468624006029-main.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1026448
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)190784
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)176196
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)186070
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)173719
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)165918
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)156123
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 5
|6 P:(DE-Juel1)156123
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1223
|x 0
914 1 _ |y 2024
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DEAL: Elsevier 09/01/2023
|2 APC
|0 PC:(DE-HGF)0125
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-24
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-24
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-09
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-09
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ELECTROCHIM ACTA : 2022
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-09
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-09
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ELECTROCHIM ACTA : 2022
|d 2024-12-09
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21