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A B S T R A C T   

Physics-based electrochemical battery models, such as the Doyle-Fuller-Newman (DFN) model, are valuable tools 
for simulating Li-ion battery behavior and understanding internal battery processes. However, the complexity 
and computational demands of such models limit their applicability for battery management systems and long- 
term aging simulations. Reduced-order models (ROMs), such as the Extended Single Particle Model (ESPM), 
Single Particle Model (SPM) and Polynomial and Padé approximations, here all referred to as simplifications, 
lead to faster computational speeds. Choosing the appropriate simplification method for a specific cell type and 
operating condition is a challenge. This study investigates the simulation accuracy and calculation speed of 
various simplifications for high-energy (HE) and high-power (HP) batteries at different current loading condi-
tions and compares those to the full-order DFN model. The results indicate that among the ROMs, the ESPM 
consistently offers the best combination of high computational speed and relatively good accuracy in most 
conditions in comparison to the full-order DFN model. Among the approximations, higher-order polynomial 
approximation, third and fourth-order Padé approximation perform the best in terms of accuracy. The higher- 
order polynomial approximation shows an advantage in terms of computing speed, while the fourth-order 
Padé approximation achieves the highest overall accuracy among the different approximations.   

1. Introduction 

Li-ion batteries (LIBs) play a crucial role in the electrification of 
transportation [1] and energy storage for smart grid applications [2]. 
Battery management systems (BMSs) are a key component for ensuring 
safe operation and maximizing LIB lifetime [3–6]. One of the core 
functions of a BMS is battery state estimation, wherein the BMS evalu-
ates internal battery states, such as the state-of-charge (SoC), 
state-of-health (SoH) and state-of-power [7]. Battery state information is 
the basis for BMS control functions, such as temperature management, 
cell balancing and current limits during (dis)charge processes [8]. The 
control capability of a BMS therefore depends on the accuracy of its 
battery state estimation which, in turn, depends on the accuracy of the 
implemented BMS battery model. Various types of battery models are 

commonly applied to enhance the performance of BMSs, which essen-
tially can be categorized into three common types: data-driven, semi--
empirical and physics-based models. 

Data-driven approaches, also known as black box models, employ 
machine learning techniques to estimate LIB states [9]. Prominent ex-
amples of such models include neural networks [10,11], gaussian 
regression [12–14] and support vector machines [15–17], which have 
recently gained popularity. The advantage of data-driven models is their 
ability to estimate complex battery dynamics with relatively low 
computational power, which makes them ideal for BMS applications. 
However, data-driven models struggle with generalization, lack physical 
insights and rely heavily on training data quality and representativeness, 
which can pose challenges when working with limited or biased datasets 
[18,19]. In recent studies, physics-based battery models have been used 
to generate training data for the data-driven models [20,21]. This 
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approach becomes more efficient, cost-effective, and time-saving, thus 
mitigating one of the disadvantages associated with data-driven models. 

Semi-empirical models, often referred to as gray box models, use 
experimental data to derive empirical equations through fitting in order 
to predict LIB behavior [22]. The most prominent example is the 
equivalent circuit model (ECM) [23–25]. The advantages of the ECM are 
low computational power requirements and simplicity. However, the 
main disadvantage of ECMs is that they primarily estimate global values, 
such as output voltage, battery temperature, SoC and SoH and lack local 
ionic concentration and potential information through the battery cell 
layers. This results in insufficient physical information, which is critical 
for monitoring battery behavior and state estimation for advanced BMSs 
[26–28]. 

The physics-based battery models are models describing the kinetic, 
thermodynamic, transport and mechanical processes in batteries [29]. 
Because of the rigorous description of the underlying phenomena, 
physics-based battery models can predict LIB performance with high 
accuracy and provide insight into the internal physical and electro-
chemical processes [22,30,31]. In addition, LIB temperature evolution 
can be accurately described in temperature-dependent models, thereby 
aiding in preventing accelerated aging and mitigating thermal runaway 
[32–35]. 

As a result, physics-based models have shown outstanding agreement 
with experimental results [36–38]. The most popular physics-based 
model for LIBs is based on the pseudo-two-dimensional (P2D) model 
framework, which is also known as the Doyle-Fuller-Newman (DFN) 
model, on account of the pioneering developers of this model [39,40]. 
However, due to its complexity and high computational demand, the 
DFN model may not be feasible for BMS applications and long-term 

aging simulations. 
Simulating the intercalation mechanism within the electrode active 

particles, as described by Fick’s second law for diffusion, represents one 
of the most computationally intensive processes [41–43]. This has led to 
the development of various approximation models for simulating 
diffusion inside the solid particles with the aim of reducing the afore-
mentioned computational burden. One of the approximation methods 
resolves the solid phase diffusion problem with a polynomial approach, 
leading to two-parameter polynomial approximation (TPA) [44,45] and 
higher-order polynomial approximation (HPA), also referred to as 
three-parameter polynomial approximation [41,42,46,47]. Another 
method is to use the Padé approximation, solving Fick’s second law for 
solid particles with a rational function [43,48–50]. Further approxi-
mation techniques were applied through the Galerkin projection 
method, balanced truncation and proper orthogonal decomposition 
[43]. While similar approximation methods can be found in the litera-
ture [51–53] for solving electrolyte phase diffusion equations, the pri-
mary focus lies in addressing solid-state diffusion due to its significantly 
higher computational intensity. 

A very popular approach for increasing computational speed is by 
simplifying the DFN model to the so-called single particle model (SPM) 
[49–51,54–59]. In the SPM approach, each electrode is considered as a 
single spherical porous particle in which electrolyte dynamics are 
neglected. However, this approach might lead to rather inaccurate 
simulation results, especially at higher C-rates. The accuracy of the SPM 
can be further improved by the incorporation of electrolyte dynamics. 
This results in an extended single particle model (ESPM), which gener-
ally has higher simulation accuracy than the SPM [43,45,47,48,51,52, 
54,57,60–62]. In this work, both the SPM and ESPM are classified as 

Nomenclature 

aEV Acceleration, m s− 2 

Af Frontal area, m2 

as Specific interfacial surface area, m− 1 

Asurf Electrode surface area, m 
b Bruggeman exponent, - 
Cd Drag coefficient, - 
ce Concentration in the electrolyte phase, mol m− 3 

ce,0 Initial electrolyte concentration, mol m− 3 

Cr Rolling friction coefficient, - 
cs Concentration in the solid phase, mol m− 3 

cavg
s Average concentration in the solid phase, mol m− 3 

cmax
s Maximum concentration in the solid phase, mol m− 3 

csurf
s Surface concentration in the solid phase, mol m− 3 

De Diffusion coefficient in electrolyte phase, m2s− 1 

Ds Diffusion coefficient in the solid phase, m2s− 1 

Ebattery Energy density, Wh kg− 1 

F Faraday constant, 96,487 C mol− 1 

f± Mean molar activity coefficient of the electrolyte, - 
g Gravitational acceleration, 9.81 m s− 2 

i0 Exchange current density, A m− 2 

Iapp Applied current, A 
jLi Molar ionic flux, mol m− 2s− 1 

k0 Reaction rate coefficient, mol− 3/2m− 1/2s− 1 

L Overall thickness of the cell, m 
m Mass, kg 
MSS Magnitude of simulation speed,% 
PEV Propulsion power, W 
qavg Volume-average concentration flux, mol m− 4 

R Universal gas constant, 8.314 J mol− 1K− 1 

r Radial position across a spherical particle, m 
Rcc Contact resistance, Ω m2 

Rs Radius of particle, m 
s Frequency domain, - 
T Temperature, K 
t Time, s 
t0
+ Transference number 

tf Simulation time of the reference model, s 
ts Simulation time of the simplified models, s 
U Equilibrium potential of the electrode, V 
Vcell Battery output voltage, V 
vEV Velocity, m s− 1 

x Position across cell layers, m 

Greek 
αa Anodic charge-transfer coefficients, - 
αc Cathodic charge-transfer coefficients, - 
δ Thickness, m 
εe Electrolyte volume fraction, - 
εs Active material volume fraction, - 
η Electrode overpotential, V 
ηEV Drive train efficiency, - 
κe Ionic conductivity, S m− 1 

ν Thermodynamic factor, - 
ρair Density of air, 1.2 kg m− 3 

σs Solid phase electronic conductivity, S m− 1 

θEV Angle of the slope, rad 
θ State vector, mol m− 2s− 1 

ϕe Electrolyte phase potential, V 
ϕmean

e Mean electrolyte phase potential, V 
ϕs Solid phase potential, V  
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reduced-order models (ROMs) while the DFN model is classified as the 
full-order model. 

On top of the physics-based modeling approaches (i.e., DFN, SPM, 
ESPM), a multitude of approximations are possible and, therefore, 
evaluating simulation accuracy and computational speed is essential for 
choosing the right simplification, where the simplification can be a 
ROM, an approximation, or a combination of both. A comparison of 
various physics-based ROMs and approximation techniques can be 
found in Table 1. From this table, it becomes apparent that there is a lack 
of comprehensive studies comparing the various approximation 
methods in combination with the various ROMs. Moreover, most studies 
only use one battery type or one set of parameters for model evaluation, 
which limits insights in how the various models perform with different 
battery types, such as high-energy (HE) or high-power (HP) batteries. 
Although review papers on model simplifications can be found in the 
literature [22,63–67], these do not adequately address the comparison 
of ROMs and model approximations due to variations in battery pa-
rameters and conditions among the cited work. In addition, Table 1 
shows that models are often evaluated under current loading conditions, 

especially constant current (CC) discharge. Therefore, there are hardly 
any insights into ROM and model approximation performance in the 
relaxation region, which is often a region with lower simulation accu-
racy, especially at low and high SoC values [68]. 

In this study, the simulation speed and accuracy of various approx-
imations, ROMs and a combination of both are evaluated in comparison 
to the physics-based, full-order DFN model from Refs. [40,41]. By 
comparing these simplifications, a more comprehensive understanding 
of model performance in the discharge and relaxation phases, as well as 
during a dynamic cycle, can be obtained. It should be noted that three 
model approximation techniques are used in this study: TPA, HPA and 
Padé approximation. Fan et al. [43] (Table 1) compared various 
approximation techniques and concluded that Padé approximation was 
most favorable in terms of accuracy and speed in comparison to Galer-
kin, balanced truncation and orthogonal decomposition. For this reason, 
we selected Padé approximation, TPA and HPA. Furthermore, the 
parameter sets of both a HE and HP battery are considered to investigate 
model performance for different battery types. Node optimization in the 
electrodes, separator and solid particles has been applied to ensure an 
unbiased and fair comparison among the model simplifications. Addi-
tionally, a sensitivity analysis explores how model parameters affect 
DFN model and ROM sensitivity. 

2. Theoretical considerations 

This section outlines the theoretical underpinnings of the DFN model 
alongside its ROMs and approximations for solid-phase concentration. 
Furthermore, insights are offered into the model’s implementation and 
comparison methodologies for assessing computational speed and 
accuracy. 

2.1. Electrochemical modeling 

A typical LIB is made up of two current collectors, a porous negative 
electrode (anode), and a porous positive electrode (cathode), as illus-
trated in the schematic overview of an LIB in Fig. 1. The active materials 
within the electrodes are represented as green and purple spherical 
particles, while additives and binders are denoted by small red and blue 
particles, respectively. The schematic representation of the DFN model, 
based on porous electrode theory, is shown in Fig. 1b. In this model, 
each electrode is considered as a collection of macro homogeneous 
spherical particles. The model describes the dynamics within the battery 
cell in two dimensions. The first dimension, represented as the 
x-dimension, includes the thickness of the various cell layers on the 
macroscopic level through which the mass transfer, electric potential in 
the solid and electrolyte are simulated. These layers include the negative 
electrode thickness (δn), the separator thickness (δs), the positive elec-
trode thickness (δp) and the overall thickness of the cell (L) but is 
excluding the current collectors. The second dimension, referred to as 
the r-dimension, can be considered on the microscopic scale and rep-
resents the (average) particle radius of the negative electrode (Rs,n) and 
positive electrode (Rs,p). In essence, the DFN model represents battery 
behavior by considering both the macroscopic layer thickness and the 
microscopic particle radius of the electrodes. Assuming that each elec-
trode can be represented by one spherical particle, instead of multiple 
particles, the DFN model reduces to an ESPM, shown in Fig. 1c. When 
further neglecting the electrolyte dynamics, the ESPM simplifies into the 
SPM, as illustrated in Fig. 1d. 

2.1.1. DFN model 
The DFN model is governed by four non-linear partial differential 

equations (PDEs) that capture the conservation of mass and charge in 
both the solid and electrolyte phases of LIBs. The concentration profile 
of Li-ions in the solid phase (cs) of both electrodes is governed by Fick’s 
second law of diffusion, represented by 

Table 1 
An overview of various physics-based battery model simplifications.  

Model +
ROMs 

Solid phase Li-ion 
concentration 
approximation 

Parameter 
sets 

Evaluation 
method 

Reference 

DFN +
ESPM 

– 1 CC-discharge 
+ dynamic 
cycle 

[62] 

DFN +
ESPM 

– 1 CC-discharge [52] 

DFN +
ESPM 

TPA 2 CC-discharge 
+ dynamic 
cycle 

[45] 

DFN +
ESPM 
+

SPM 

– 1 CC-discharge 
+ dynamic 
cycle 

[54] 

DFN +
ESPM 
+

SPM 

– 1 CC-discharge [61] 

ESPM Padé approximation 1 Dynamic cycle [48] 
DFN +

SPM 
TPA + HPA 1 Dynamic cycle [42] 

ESPM +
SPM 

– 1 CC-discharge 
+ drive cycle 

[60] 

SPM Padé approximation 1 CC-discharge [69] 
DFN TPA + HPA 1 CC-discharge [41] 
DFN +

SPM 
TPA + HPA 1 CC-discharge/ 

charge +
dynamic cycle 

[47] 

ESPM Padé approximation +
Galerkin projection 
method + Balanced 
truncation + Proper 
orthogonal 
decomposition 

1 Dynamic cycle [43] 

DFN +
ESPM 
+

SPM 

– 1 CC-discharge/ 
charge +
dynamic cycle 

[51] 

DFN +
ESPM 
+

SPM 

– 1 CC-discharge [57] 

SPM Padé approximation 1 CC + constant 
voltage 

[50] 

DFN +
SPM 

– 2 CC-discharge 
+ dynamic 
cycle 

[70] 

DFN +
ESPM 
+

SPM 

TPA + HPA + Padé 
approximation 

2 CC-discharge 
+ Relaxation +
dynamic cycle 

Present 
work  
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∂cs(r, t)
∂t

=
Ds

r2
∂
∂r

(

r2∂cs(r, t)
∂r

)

, r ∈ [0,Rs], (1a)  

with boundary conditions 

∂cs(r, t)
∂r

⃒
⃒
⃒
⃒

r=0
= 0, (1b)  

− Ds
∂cs(r, t)

∂r

⃒
⃒
⃒
⃒

r=Rs

= jLi(x, t), (1c)  

where t is time, Ds the diffusion coefficient in the solid phase, Rs the 
particle radius and jLi is the molar ionic flux. Eqs. (1b-1c) apply Neuman 
boundary conditions at the boundary (r = Rs) and center (r = 0) of the 
particle. 

The Li-ion concentration in the electrolyte phase (ce) of the porous 
electrode and separator regions can be calculated with 

εe
∂ce(x, t)

∂t
=

∂
∂x

(

Deεb
e
∂ce(x, t)

∂x

)

+ as
(
1 − t0

+

)
jLi(x, t), x ∈ [0, L], (2a)  

with boundary conditions 

∂ce(x, t)
∂x

⃒
⃒
⃒
⃒

x=0
=

∂ce(x, t)
∂x

⃒
⃒
⃒
⃒

x=L
= 0, (2b)  

where εe is the electrolyte volume fraction, b the Bruggeman exponent, 
De the diffusion coefficient of the electrolyte phase, as the specific 
interfacial surface area, which is calculated as as = 3εs/Rs, εs the active 
material volume fraction and t0

+ is the transference number. These 
equations govern the transport of Li+ ions within the electrolyte phase, 
capturing the movement of ionic species between the cathode and anode 
in both directions. 

The solid phase potential (ϕs), which is the potential along the 
thickness of the two electrodes, is calculated by Ohm’s law 

∂
∂x

(

σsεs
∂ϕs(x, t)

∂x

)

= asFjLi(x, t), x ∈ [0, δn] ∪
[
L − δp,L

]
, (3a)  

with boundary conditions 

Fig. 1. Schematic illustration of a LIB (a) and the DFN (b), ESPM (c) and SPM (d) modeling approaches.  
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σsεs
∂ϕs(x, t)

∂x

⃒
⃒
⃒
⃒

x=0
= σsεs

∂ϕs(x, t)
∂x

⃒
⃒
⃒
⃒

x=L
=

Iapp(t)
Asurf

, (3b)  

∂ϕs(x, t)
∂x

⃒
⃒
⃒
⃒

x=δn

=
∂ϕs(x, t)

∂x

⃒
⃒
⃒
⃒

x=L− δp

= 0, (3c)  

where σs is the solid phase electronic conductivity, F the Faraday con-
stant, Iapp the applied current and Asurf is the electrode surface area. 

The electrolyte phase potential (ϕe) is described by 

∂
∂x

(

κeεb
e
∂ϕe(x, t)

∂x
+ κeεb

eν 2RT(t)
F

∂lnce(x, t)
∂x

)

= − asFjLi(x, t), x ∈ [0, L],

(4a)  

with boundary conditions 

∂ϕe(x, t)
∂x

⃒
⃒
⃒
⃒

x=0
= ϕe(x, t)|x=L = 0, (4b)  

where κe is the electrolyte conductivity, R the universal gas constant and 
T is the absolute temperature. Additionally, ν is the thermodynamic 

factor calculated as ν = (1 − t0
+)
(

1 +
dlnf±
dlnce

)
, in which f± is the mean 

molar activity coefficient of the electrolyte [29]. 
The Butler-Volmer equation can be used for describing the electro-

chemical reaction-rate at the solid/electrolyte interface and relates the 
overpotential at the electrodes (η) with the jLi for x ∈ [0, δn] ∪ [L − δp,

L] as 

jLi(x, t) =
i0(x, t)

F

(

exp
(

αa
F

RT(t)
η(x, t)

)

− exp
(

αc
F

RT(t)
η(x, t)

))

(5a)  

where the overpotential at the electrodes is 

η(x, t) = ϕs(x, t) − ϕe(x, t) − U(x, t), (5b)  

the exchange current density is 

i0(x, t) = k0(ce(x, t))αa
(
cmax

s − csurf
s (x, t)

)αa ( csurf
s (x, t)

)αc
, (5c)  

and the battery voltage is 

V(t) = ϕs(L, t) − ϕs(0, t) −
Rcc

Asurf
Iapp(t) . (5d) 

In Eq. (5), αa and αc are the anodic and cathodic charge-transfer 
coefficients, respectively, U is the equilibrium potential of the elec-
trode, which is in modeling work often defined as a predefined nonlinear 
function of the stoichiometry. Furthermore, k0 is the reaction-rate con-
stant of the electrochemical reaction, cmax

s is the maximum ionic con-
centration in the solid phase and Rcc is the contact resistance. A flux of 
Li-ions leaving the solid particle occurs when jLi > 0 and entering the 
solid particle when jLi < 0. In the separator region, where no particles 
are present, jLi = 0. 

2.1.2. Reduced-order models 
ROMs are used to simplify representations of high-dimensional sys-

tems, preserving essential behavior for maintaining accuracy while 
reducing computational complexity for improving simulation speed. 
The SPM and ESPM are classified as ROMs. The SPM is a ROM in which 
each electrode is considered as a single spherical particle and where 
electrolyte dynamics are neglected. The SPM is derived based on the 
following assumptions:  

• cs remains constant along the spatial coordinate x in both electrodes.  
• i0 is independent of the spatial coordinate x and only varies with 

time.  
• The charge-transfer coefficients αa and αc are typically assumed to be 

0.5. 

As a result of the initial two assumptions, the interfacial flux of Li+

ions at the solid/electrolyte interface remains constant across each 
electrode. Therefore, for the SPM, jLi can be calculated for the negative 
and positive electrode with 

jLi(t) = −
Iapp(t)

Asurfas,nδnF
, (6a)  

and 

jLi(t) =
Iapp(t)

Asurfas,pδpF
, (6b)  

respectively. As a result of these assumptions, the simplified electrode 
overpotential is obtained with 

η(t) = sinh− 1
(

jLi(t)F
i0(t)

)

∗
RT(t)

F
, (7)  

where i0 is calculated from Eq. (5c) with the assumption of ce being set as 
constant value using the initial electrolyte concentration (ce,0). Of all 
PDEs in Section 2.1.1, only the PDE in Eq. (1) needs to be used for the 
SPM. 

The SPM can be extended by implementing electrolyte dynamics, 
resulting in the ESPM, which combines a single particle model for both 
electrodes along with electrolyte dynamics and uses the PDEs as 
described in Eqs. (1), (2) and (4). In addition, the total concentration of 
Li+ ions in the electrolyte and the solid are conserved and treated 
separately in each phase. Consequently, the electrode overpotential 
from Eq. (7) needs to be modified with the mean electrolyte phase po-
tential (ϕmean

e ), giving 

η(t) = sinh− 1
(

jLi(t)F
i0(t)

)

∗
RT(t)

F
+ ϕmean

e (t) . (8)  

where jLi can be obtained from Eqs. (6a-b). 
Table 2 gives an overview of the PDEs used for the SPM, ESPM and 

DFN models. From this table, it can be seen that the DFN model makes 
use of all PDEs, while the SPM only makes use of one PDE, making the 
SPM computationally faster, but also less accurate. The SPM approach 
leads to 17 necessary model parameters. These parameters are listed in 
Table 3 and structured in various groups: geometric, transport, kinetic, 
concentration and thermodynamic. Note that in Table 3, not all the 17 
SPM parameters are shown because various parameters occur twice, i.e., 
for both electrodes. Obviously, this also holds for the DFN and the ESPM. 
The ESPM, which has fewer simplifications than the SPM, but still being 
a simplified version with respect to the DFN model, requires a set of 27 
parameters. The DFN model in this study uses a total of 31 parameters 
and thus has the most parameters of all three models. The difference in 
the number of parameters reflects the level of complexity and order 
reductions implemented in each model, which gives room for making 
trade-offs between accuracy and computational efficiency. However, 
these trade-offs are nontrivial and need to be carefully considered per 
application. This means, for example, a HP battery can be simulated 
with a different model in comparison to a HE battery, while obtaining 
the same level of accuracy. 

Table 2 
Overview of PDEs required for the SPM, ESPM and DFN models. The ✓ and ⨯ 
symbols indicate whether a particular governing equation is required or not.  

Governing equation Eq. SPM ESPM DFN 

Concentration of Li+ ions in the solid phase (1) ✓ ✓ ✓ 
Concentration of Li+ ions in the electrolyte phase (2) ⨯ ✓ ✓ 
Electrolyte phase potential (4) ⨯ ✓ ✓ 
Solid phase potential (3) ⨯ ⨯ ✓  
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2.1.3. Solid phase concentration approximations 
On top of all models, including the ROMs, approximations of the Li- 

ion solid phase concentration (Eq. (1)) can be made. Approximations 
simplify mathematical expressions or systems to obtain practical solu-
tions without the need for complex computations. The approximations 
for the solid phase lithium concentration are based on the primary 
assumption that the diffusion dynamics within the solid particles result 
in the heaviest computational burden. By approximating the diffusion 
dynamics, a substantial increase in simulation speed can be achieved. As 
shown in Table 1, polynomial and Padé methods are commonly imple-
mented for such approximations, which are also adopted in this study. 

The concentration profile inside the particle can be approximated 
using polynomial approximation [46]. The TPA for the solid phase 
concentration is defined as 

dcavg
s (x, t)

dt
=

− 3
Rs

jLi(x, t), (9a)  

and 

csurf
s (x, t) = cavg

s (x, t) −
Rs

5Ds
jLi(x, t) . (9b) 

Eq. (9a) calculates the average concentration in the solid phase (cavg
s ), 

while Eq. (9b) calculates the surface concentration in the solid phase 
(csurf

s ). Alternatively, the HPA can be used, which is defined as 

∂cavg
s (x, t)

∂t
=

− 3
Rs

jLi(x, t), (10a)  

∂qavg(x, t)
∂t

= − 30
Ds

R2
s
qavg(x, t) −

45
2

jLi(x, t)
R2

s
, (10b)  

csurf
s (x, t) = cavg

s (x, t) −
Rs

35Ds
jLi(x, t) + 8Rsqavg(x, t), (10c)  

where qavg is the volume-average concentration flux. 
Another approach for simplifying the solid phase concentration in-

volves the utilization of Padé approximation [34]. Padé approximation 
is a technique that approximates a function using a rational polynomial 
centered around a specific point. A transfer function in the frequency 
domain (s), representing the solid phase concentration, can be obtained 
by applying a Laplace transformation to Eq. (1). To simplify this transfer 
function, Padé approximation can be used to derive an approximation of 
arbitrary order that covers a specific frequency range, determined by the 
order of the transfer function. In diffusion-based problems, the focus is 
often on low-frequency behavior, leading to an approximation 
approaching zero [43,50,71]. The transfer functions for cavg

s and csurf
s are 

defined by 

cavg
s (x, s)
jLi(x, s)

=

∫ Rs
0 cs(r, t)(4πr2dr)

(4/3)πR3
s

= −
3

asFRss
, (11a)  

and 

csurf
s (x, s)
jLi(x, s)

=
a0 + a1s + a2s2 + … + an− 1sn− 1

s(1 + b2s + b3s2 + … + bnsn− 1)
, (11b)  

respectively, where the coefficients an and bn are dependent on the order 
of the Padé approximation. In this study the second-order (P2), third- 
order (P3) and fourth-order (P4) are selected to enable a comprehen-
sive comparison across a wide range, for which the elaborated versions 
can be found in Table 4. 

For an easy implementation of the Padé approximation, the transfer 
function can be transformed into a state-space representation, which is 
defined by 

∂θ(x, t)
∂t

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0 ⋯ 0

0 0 1 0 0 0

0 0 0 ⋱ 0 0

⋮ ⋮ ⋮ ⋮ 1 0

0 0 0 0 0 1

0 −
1
bn

−
b2

bn
−

b3

bn
⋯ −

bn− 1

bn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

θ(x, t) +

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
⋮
0
1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

jLi(x, t),

(12a)  

[
cavg

s (x, t)
csurf

s (x, t)

]

=

⎡

⎢
⎢
⎣

a0b1

bn

a0b2

bn
⋯

a0bn

bn

a0

bn

a1

bn
⋯

an− 1

bn

⎤

⎥
⎥
⎦θ(x, t), (12b)  

θinit(x, t) =
[

csurf
s,init(x, t)

bn

a0
0 ⋯ 0

]T

, (12c)  

where θ is the state vector, for which the initial values (Eq. (12c)) are 
determined based on the initial concentration in the solid phase [72]. 
The conversion from a transfer function to a state-space model is widely 
used in control system analysis and design. The derived state-space set 
calculates the concentrations csurf

s and cavg
s from Eq. (12b). Note that for 

the DFN approach jLi(x, t) in Eq. (12a) is calculated from Eq. (5a), while 
for the SPM or ESPM approaches it’s calculated as jLi(t), using Eqs. 
(6a-b). 

2.2. Model implementation 

A combination of spatial and temporal discretization methods is 
employed to solve the PDEs given in Eqs. (1) to (4). The finite difference 

Table 3 
Overview of the parameters required for the SPM, ESPM and DFN models. The ✓ 
and ⨯ symbols indicate whether a particular parameter is required or not.  

Group Parameter SPM ESPM DFN 

Geometric δ ✓ ✓ ✓ 
Asurf ✓ ✓ ✓ 
εs ✓ ✓ ✓ 
εe ⨯ ✓ ✓ 
Rs ✓ ✓ ✓ 

Transport Ds ✓ ✓ ✓ 
De ⨯ ✓ ✓ 
σs ⨯ ⨯ ✓ 
κe ⨯ ✓ ✓ 
b ⨯ ✓ ✓ 
t0+ ⨯ ✓ ✓ 

Kinetic k0 ✓ ✓ ✓ 
Rcc ✓ ✓ ✓ 
α ⨯ ⨯ ✓ 

Concentration cmax
s ✓ ✓ ✓  

ce,0 ✓ ✓ ✓ 
Thermodynamics U ✓ ✓ ✓  

Table 4 
Padé approximations of csurf

s in Eq. (11b) for three orders.  

Order Transfer function 

Second (P2) 3
Rs

+
2Rs

7Ds
s

s
(

1 +
R2

s
35Ds

s
)

Third (P3) 3
Rs

+
4Rs

11Ds
s +

R3
s

165D2
s
s2

s
(

1 +
3R2

s
55Ds

s +
R4

s
3465D2

s
s2

)

Fourth (P4) 3
Rs

+
2Rs

5Ds
s +

2R3
s

195D2
s
s2,+

4,R5,
,s

7, 507,5D,,3s
s3

s
(

1 +
R2

s
15Ds

s +
2R4

s
2275D2

s
s2,+

,R6
s, ,

67,567, 5D,,3s
s3

)
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method (FDM) [45,73] is used for the full-order DFN model to discretize 
Eq. (1) along the r-direction. For Eqs. (2) to (4) the finite volume method 
(FVM) is applied, using the harmonic mean to determine the boundary 
values between two neighboring control volumes [41]. The number of 
discretized points or nodes for the FDM and FVM grids is further 
explained in Section 3.3. The resulting system of differential-algebraic 
equations is solved using Newton’s method of which the tolerance was 
set to 1 × 10− 3 in all simulations. A more detailed description of New-
ton’s method implemented for the DFN model can be found in Refs. [45, 
73]. The simulation time-step is chosen to be 1 s and the model tem-
perature is set to isothermal conditions of 25 ◦C. It should be noted, 
however, that isothermal conditions are not fully representing 
real-world behavior. Temperature variations can significantly influence 
battery performance, affecting parameters such as the reaction-rate 
coefficient, ionic conductivity, and diffusion coefficients in the solid- 
and electrolyte-phase. Model programming and simulations are per-
formed using MATLAB R2021b. A computer with AMD Ryzen 7 5700 U 
CPU @ 1.8 GHz, 24 GB RAM and Windows operating system has been 
used. The full-order DFN model will be used as reference model for 
comparison with all simplifications in this study. 

2.3. Computational speed and model accuracy 

To evaluate the computational speed of the various simplified 
models, the magnitude of simulation speed (MSS) is used, which is 
defined as 

MSS =

(
tf − ts

tf

)

× 100, (13)  

where tf is the simulation time of the reference model and ts the simu-
lation time of the simplified models (ROMs and approximations). All 
reported simulation times have been obtained by averaging the duration 
of 10 simulation repetitions, with the simulation time measured without 
pre-memory allocation of variables. 

To evaluate the model accuracy, the root mean squared error (RMSE) 
has been used, which is defined as 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑N

m=1

(
yf − ys

)2

N
.

√
√
√
√ (14)  

where yf are the reference model output values, ys the output values of 
the simplified model and N the number of simulated values. 

3. Case studies 

This section introduces the battery types utilized, emphasizing key 
parameter distinctions. Additionally, it delves into simulation studies, 
encompassing CC-simulations, dynamic simulations, node optimiza-
tions, sensitivity analysis methods, and parameter ranges. 

3.1. Battery types 

In this study, the parameter sets of a HE and HP battery are used, 
adopted from Refs. [68] and [74], respectively. The HE battery is a 
commercial cell from LG (LGM50), having a rated capacity of 5 Ah with 
NMC811 as the positive electrode material and a mixed graphite/silicon 
negative material [68]. The HP battery is as well a commercial cell 
(unspecified manufacturer), has a rated capacity of 28 Ah with NMC111 
as cathode material and graphite as anode material. A comparison be-
tween the measured and simulated voltage for the two cells is presented 
in Fig. S1. The average RMSEs for the HE and HP batteries are 37 and 19 
mV, respectively. The higher error observed in the HE battery compared 
to the HP battery can be attributed to several factors. In the HE battery, 
parameters such as particle radii and electrode thicknesses are typically 
larger, resulting in more pronounced concentration profiles within the 

solid-phase. This leads to higher overpotentials in the HE battery 
compared to the HP battery. Due to the larger and more complex con-
centration profiles, capturing these effects accurately in the model be-
comes more challenging. Consequently, higher RMSEs are expected in 
the HE battery simulations compared to the HP battery simulations. In 
both this work and the work of Ref [68], the HE model considers a 
negative electrode containing graphite active particles only, thus 
neglecting silicon and the hysteresis effect, which could lead to addi-
tional simulation inaccuracies for the HE battery. Furthermore, it should 
be noted that Ds,p, Ds,n, k0,n and k0,p are considered concentration inde-
pendent and, therefore, set as constant values. 

Table 5 shows the most distinct parameters for the HE and HP bat-
teries. The most significant difference lies in the transport parameters 
and kinetics of the active electrode material for the HP battery. Addi-
tionally, the HP battery has a thinner electrode design to enhance power 
performance. However, it should be noted that the HP battery has a 
significantly lower energy density (Ebattery) compared to the HE battery. 
Fig. 2 shows the full-order DFN model results for both battery types at 
various C-rates using the parameter values in Refs. [68] and [74]. The 
simulation results demonstrate that the overpotentials for the HE battery 
are far larger than those for the HP battery, which proves completely 
different battery behavior between both battery types. 

3.2. Simulation studies 

3.2.1. CC-discharge and relaxation 
CC-discharge simulations at three C-rates, followed by relaxation 

periods, are performed to compare the simplified models with the DFN 
reference model under static conditions. For the HE battery, simulations 
are performed at 0.25, 0.5 and 1C, while for the HP battery, simulations 
are performed at 1, 2, and 3C. Before each discharge simulation, the 
initial SoC is set to 1, corresponding to a voltage of 4.18 V for the HE 
battery and 4.15 V for the HP battery. The cut-off voltages are set to 2.5 
V and 3 V for HE and HP batteries, respectively. The CC-discharge is 
followed by a relaxation period during which no current is applied until 
the output voltage stabilized at a steady-state level. 

3.2.2. Dynamic cycle 
A current profile, obtained from a drive cycle, is used to compare the 

performance of the simplified models under dynamic current loading 
conditions. The Worldwide Harmonized Light Vehicles Test Procedure 
(WLTP) class 3b cycle is chosen, of which the speed profile is shown in 
Fig. 3a. The WLTP covers a comprehensive range of speeds, accelera-
tions, decelerations and stops, resembling real-world driving conditions 
[75] and is therefore ideal for investigating dynamic model perfor-
mance. The WLTP consists of four driving regions representing different 
scenarios: low speed (A1), medium speed (A2), high speed (A3) and 

Table 5 
Summary of the highest difference between the selected batteries. The n and p in 
subscript represent the negative and positive electrodes, respectively.  

Parameter HE [68] HP [74] Difference* [%] 

σs,p 0.18 10 5456 
k0,n (10− 11) 0.835 1000 1769 
Ds,p (10− 14) 0.4 2.04 411 
σs,n 215 1000 365 
k0,p (10− 11) 4.605 7.423 61 
Rs,p (10− 6) 5.22 2.13 59 
δs (10− 6) 12.0 18.7 56 
Ebattery** 267 134 50 
δn (10− 6) 85.2 46.6 45 
δp (10− 6) 75.6 43.0 43  

* Difference =
|HEParameter− HPParameter|

HEParameter
× 100 

** Ebattery =
Rated capacity × Nominal battery voltage

Battery weight  
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extra high speed (A4). 
The required propulsion power of an electric vehicle (EV) during the 

WLTP drive cycle can be calculated based on the forces, including the 
vehicle’s rolling force, drag force and acceleration force. The required 
propulsion power (PEV) can be estimated by 

PEV =
(
Crmgcos(θEV)+ 0.5CdAfρairv

2
EV +maEV

)
∗

vEV

ηEV
, (15)  

where, Cr is the rolling friction coefficient, m the mass, g the gravita-
tional acceleration, θEV the angle of the slope the vehicle is driving on, 
considered to be 0 in this study, Cd the drag coefficient, Af the frontal 
area, ρair the density of air, vEV the velocity, aEV the acceleration and ηEV 
is the drive train efficiency. To calculate the propulsion power, the 
technical specifications from a Nissan Leaf e+ have been used, which are 

shown in Table 6. Based on the calculated propulsion power and the 
battery specifications, the C-rate has been calculated, which is shown in 
Fig. 3b. The mean discharge C-rate for the HE battery is found to be 
0.27C. Note that the mean C-rate has been calculated from discharge C- 
rates only. To evaluate the models at a higher C-rate, the standard C-rate 
additionally has been scaled to a mean discharge C-rate of 0.5C. 

For model comparison of the HP battery type, the same profile 
should be applied. However, the C-rates of 0.27 and 0.5 are somewhat 
too mild for the HP battery and therefore the C-rates shown in Fig. 3b are 
scaled by a factor of two. This factor is determined from the difference in 
energy density between the HE and HP battery (see Table 5). Conse-
quently, the C-rate for the WLTP cycle was adjusted to a mean discharge 
C-rate of 0.54 and 1, as shown in Fig. 3c. In all the simulations with the 
WLTP cycle, the initial SoC has been set to 0.5. 

Fig. 2. Simulation results of discharge voltage curves for the HE (a) and HP (b) batteries at various C-rates, including electromotive force (EMF).  

Fig. 3. WLTP cycle class 3b, speed (a), calculated C-rate for the HE battery (b) and HP battery (c) as a function of time.  
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3.3. Node optimization 

To ensure a fair comparison between the used models and to achieve 
high simulation accuracy with the highest simulation speed, the number 
of discretized points for the PDEs along the r and x-directions has been 
optimized, a process which is further referred to as node optimization. 
This optimization process determines the appropriate number of nodes, 
i.e., obtaining the fastest simulation time with an accuracy within a 
boundary. The nodes are equally distributed across five grids: the pos-
itive and negative electrode particles (r-direction), the positive and 
negative electrode, and the electrolyte (x-direction). Choosing a suffi-
ciently large number of nodes leads to good accuracy while selecting a 
too large number of nodes results in increased computation time without 
a significant increase in accuracy. The optimization process has been 
performed by simulating the reference model with various numbers of 
nodes. To obtain accurate data for comparison, the reference DFN model 
has been simulated using a relatively high number of 50 nodes for both 
the FDM and FVM grids. Then, additional simulations have been per-
formed with a number of nodes ranging between 6 and 50. The RMSE of 
the simulated output voltage has been compared to the reference voltage 
with a selected tolerance of 35 µV. The smallest number of nodes, with 
the simulated output voltage within the tolerance, has been selected. 
The optimized number of nodes have been applied to all models, 
including the simplified models. 

Node optimization has been performed for both the HE and HP 
battery and for various operating conditions. Table 7 shows the opti-
mized results. It can be seen that in the case of simulating a HE battery, 
the positive electrode and positive particle have a higher number of 
nodes compared to the negative side. This is primarily because the 
diffusion coefficient of the negative electrode is almost one order of 
magnitude larger than that of the positive electrode. Conversely, for the 
HP battery, the highest number of nodes is found in the negative par-
ticle. This is due to the relatively large particle radius compared to the 

positive counterpart, resulting in longer diffusion distances. Further-
more, it is worth noting that for both batteries and all operation con-
ditions, the number of nodes in the separator region remains unchanged, 
with the optimal value determined to be the lowest of all regions. The 
reason is that the separator region is relatively thin, in which the elec-
trolyte dynamics show almost linear behavior. 

3.4. Sensitivity analysis 

Sensitivity analysis plays a crucial role in identifying influential 
parameters that significantly impact the model output. Understanding 
the relative influence of the various model parameters makes optimizing 
or accurately estimating critical parameters easier. The sensitivity 
analysis in this study provides valuable insights into how model 
parameter changes affect the overall model behavior. A sensitivity 
analysis was conducted on the DFN, ESPM, and SPM models to compare 
their sensitivity to parameter changes and to evaluate the impact of 
simplifying the models by neglecting certain features. The QR factor-
ization method [80] was employed, which assesses parameter correla-
tions by measuring the extent to which the columns of the sensitivity 
matrix tend toward orthogonality through QR factorization. This pro-
cess results in a parameter ranking, where dependent parameters receive 
lower rank and parameters demonstrating independence receive higher 
rank [81]. To assess the sensitivity of each parameter, a range of values 
is defined based on literature estimates for LIB parameters, which are 
shown in Table 8. A total of 25 parameters are used, where Asurf , α, ce,0 
and U are excluded here. The sensitivity matrix of each model was 
orthogonalized with respect to the output voltage of the model to obtain 
the sensitivity of parameters. Further details about this method applied 
to battery models can be found in Refs. [82,83]. The sensitivity analysis 
is performed using a full 1 C-rate CC-discharge followed by a relaxation 
period of 15 min. 

4. Simulation results 

The DFN model is validated against a well-known, accurate DFN 
model from the LIONSIMBA toolbox [41]. Furthermore, the various 
ROMs and solid phase concentration approximations are evaluated 
based on the different conditions presented in Section 3. Additionally, 
the sensitivity analysis results are presented. 

4.1. DFN model validation 

Before starting to compare the models, the full-order DFN model 
(presented in Section 2) is validated using the LIONSIMBA toolbox and is 
further used as a reference model in this study [41]. The LIONSIMBA 
toolbox, which makes use of numerical calculation methods, contains 
the DFN model for LIBs in MATLAB, previously validated against a DFN 
model in COMSOL Multiphysics® [93]. The parameters used in the 
validation process are the same as those used in the LIONSIMBA model 

Table 6 
Technical specifications for a Nissan Leaf e+ used for calculating the propulsion 
power and the C-rates in Fig. 3.  

Parameter Unit Value Reference 

Vehicle mass kg 1756 [76] 
Frontal area m2 2.276 [77] 
Drag coefficient – 0.29 [78] 
Rolling friction coefficient – 0.012 [79] 
Drive train efficiency – 0.739 [79] 
Battery pack energy kWh 62 [76] 
Battery pack nominal voltage V 350 [76] 
Number of cells in the pack – 288 [76] 
Cells in series – 96 [76] 
Cells in parallel – 3 [76] 
Cell Capacity Ah 59 Estimated*  

* Battery pack energy
Cells in parellel × Battery pack nominal voltage

.

Table 7 
Optimized number of nodes for various operating conditions and battery types, which are used for all model types, including simplified models.  

Battery type and operation condition C-rate Negative 
electrode 

Positive 
electrode 

Separator Negative 
particle 

Positive 
particle 

HE (CC-discharge + relaxation) 0.25 10 34 6 20 28 
0.5 13 40 6 28 36 
1 18 44 6 33 42 

HP (CC-discharge + relaxation) 1 8 9 6 45 6 
2 11 12 6 46 9 
3 13 15 6 47 12 

HE (drive cycle) 0.27* 13 41 6 6 47 
0.5* 17 45 6 19 49 

HP (drive cycle) 0.54* 8 10 6 22 11 
1* 11 13 6 31 14  

* Mean discharge C-rate. 
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presented in Ref. [41]. To achieve accurate validation, an equal number 
of nodes has been set for both the DFN model in this study and the 
LIONSIMBA toolbox. In Fig. 4, simulation results of both models are 
shown for CC-discharge rates of 1, 2 and 3C. This comparison reveals 
that the two models show visually identical results for all states, such as 
voltages and concentrations. The RMSE values of the battery voltage in 
Fig. 4a are 0.06, 0.33 and 0.69 mV at 1, 2 and 3C-rate, respectively. 
Additionally, a comparison is performed with a pulsed cycle, revealing 
an RMSE of 0.42 mV. The simulation results of the pulsed cycle are 
shown in Fig. S2. The validation with LIONSIMBA assures that the 
implemented DFN model in this study is consistent with established 
models and that it can be used as a proper reference model. 

4.2. Evaluation of ROMs and approximations 

4.2.1. CC-discharge and relaxation results 
Fig. 5 shows the simulation results of ROMs and approximations, in 

comparison to the reference DFN-model. Note that the most important 
selection of simplifications is shown and that the various approxima-
tions on the ROMs have been left out to not impede the figure. The re-
sults are shown for both the HE (Fig. 5a-c) and HP (Fig. 5d-f) batteries 
under various discharge C-rates. From a visual observation of the results 

can be concluded that the general CC-discharge and relaxation behavior 
are in line with the reference model, thereby validating the fidelity of the 
simplifications. However, looking into somewhat more detail, it be-
comes apparent that the SPM has the lowest agreement among the two 
ROMs. When comparing the SPM with the ESPM, it becomes evident 
that the accuracy significantly improves by adding the electrolyte dy-
namics. Both the SPM and ESPM demonstrate relatively large differences 
in the discharge region compared to the reference model, while showing 
good agreement in the relaxation region. The DFN model with the TPA 
and HPA methods shows relatively good agreement with the reference 
model at all C-rates for both the HE and HP battery. However, in the 
initial discharge and relaxation regions the DFN model with TPA has less 
agreement with the reference model compared to the DFN with HPA. 
The DFN model with Padé approximations (P2, P3 and P4) shows good 
agreement with the reference model, where the higher order Padé ap-
proximations obviously result in superior accuracy. This also holds true 
for the initial discharge and the relaxation regions. Supplementary 
Fig. S3 shows the error as a function of time. 

From the results presented in Fig. 5, it can be concluded that the DFN 
model with P4 approximation is the most accurate model to be adopted, 
given its good accuracy. However, this is a provisional conclusion 
because no quantitative error and calculation speed is revealed yet. 
Therefore, for a more detailed and quantitative analysis of the differ-
ences between the reference model and simplifications, the RMSE has 
been calculated. Fig. 6 shows the total RMSE, which is the RMSE 
calculated for both the discharge and relaxation (blue bars), as well as 
the RMSE separately calculated for the discharge (orange bars) and 
relaxation regions (yellow bars). From the results in Fig. 6, it can 
immediately be seen that the RMSE increases with the C-rate (as indi-
cated by the varying intensity in color shades) for all simplifications and 
batteries. This outcome can be attributed to the fact that the simplifi-
cations fail to capture the increased nonlinear dynamic behavior asso-
ciated with higher C-rates. In general, the RMSE in the discharge region 
is lower for the HP battery compared to the HE battery, even though the 
HP battery is simulated at higher C-rates. The lower RMSE can be 
attributed to the specific HP battery parameters (Table 5), such as the 
relatively high solid phase electronic conductivity and thin electrode 
thickness, being advantageous for the ROMs. These properties lead to a 
relatively uniform potential distribution across the electrode thickness, 
which is also shown in supplementary Fig. S4. From the RMSE results, it 
can be clearly seen that the SPM and ESPM show the largest errors in the 
discharge region for both battery types, as also already concluded from 
Fig. 5. Another general trend, visible from Fig. 6, is that the RMSE de-
creases as a function of model order. 

When considering the approximations, then TPA has the least overall 
accuracy for both batteries, although the accuracy for the discharge 
region for a HP battery is fairly accurate. The RMSEs for the HPA and P2 
approaches are quite similar. Therefore, regarding accuracy, it is of less 
relevance if a HPA or P2 approximation approach is adopted. The DFN 
model with Padé approximations shows remarkable accuracy in the 
discharge region for the HP battery. However, in the relaxation region 
for the HP battery, the Padé approximations show relatively high RMSE 
values, for P2 and P3 even higher than the SPM and ESPM. On the other 
hand, for the HE battery, the RMSEs are similar between the discharge 
and relaxation regions. If only the simulation accuracy is considered, 
then from all simplifications the DFN model with P4 is the model of 
choice for both a HE and HP battery. 

Fig. 7 shows the RMSE and MSS among all simplifications and C-rates 
for the HE (Fig. 7a-c) and the HP (Fig. 7d-f) battery simulations. The 
RMSE in Fig. 7 is the one for the full simulation, i.e., combined CC- 
discharge and relaxation parts. The SPM, including all its approxima-
tions (SPM group), shows the highest MSS, averaging 98% for the HE 
battery and 96% for the HP battery and is therefore the best approach in 
terms of calculation speed. However, the simulation accuracy with the 
SPM group is poor and increases as a function of C-rate, as already 
concluded from Fig. 6. This especially holds for the HE battery. The 

Table 8 
Summary of parameter ranges for common type LIBs from literature.  

Parameter Values from literature Range 

δn (10− 6) 46.6 [74], 50 [43,55], 62 [84], 67 [85], 73.7 [86], 81 
[87], 85.2 [68], 88 [41], 96 [88] 

46 – 96 

δs (10− 6) 12.0 [68], 18.7 [74], 19 [86], 20 [87], 24.4 [55], 25 [41, 

43,84,85,88] 

12 – 25 

δp (10− 6) 36.4 [43,55], 43.0 [74], 54.5 [86], 60 [88], 74 [84], 
75.6 [68], 78 [87], 79 [85], 80 [41] 

36 – 80 

εs,n 0.404 [86], 0.419 [85], 0.45 [84], 0.48 [43], 0.493 [74], 
0.536 [88], 0.58 [55], 0.75 [68] 

0.40 – 
0.75 

εs,p 0.375 [85], 0.38 [84], 0.3917 [86], 0.5 [43,55], 0.534 
[88], 0.572 [74], 0.59 [41], 0.665 [68] 

0.37 – 
0.67 

εe,n 0.25 [68], 0.264 [87], 0.292 [74], 0.329 [86], 0.332 
[43,55], 0.4 [88], 0.485 [41], 0.5 [84] 

0.25 – 
0.50 

εe,s 0.305 [74], 0.4 [88], 0.46 [87], 0.47 [68], 0.5 [43,55, 

84], 0.508 [86], 0.724 [41] 

0.30 – 
0.73 

εe,p 0.209 [74], 0.281 [87], 0.296 [86], 0.33 [43,55], 0.335 
[68], 0.36 [88], 0.385 [41], 0.45 [84] 

0.20 – 
0.45 

Rs,n (10− 6) 1 [55], 2 [41], 3.5 [43], 5.86 [68], 6.3 [74], 8 [88], 8.7 
[86], 10 [87], 11 [85] 

1 – 11 

Rs,p (10− 6) 1 [55], 2 [41,43], 2.13 [74], 5 [87,88], 5.22 [68], 6.49 
[86], 7 [85] 

1 – 7 

Ds,n (10− 14) 1.5 [43], 1.75 [87], 3 [84], 3.21* [74], 3.3 [68], 3.9 
[41], 7 [88], 8.8 [89] 

1 – 9 

Ds,p (10− 14) 0.4 [68], 1 [41], 1.35 [43], 2.04* [74], 3 [84,87,88], 8 
[89] 

0.4 – 8 

De (10− 10) 1.36* [90], 1.65* [91], 1.77* [68], 2.4 [86], 2.6 [55], 
2.8* [88], 3.2* [92], 7.5 [41] 

1.3 – 7.5 

σs,n 14 [86], 100 [41,55,85,88], 215 [68], 1000 [74] 14 – 
1000 

σs,p 0.18 [68], 0.5 [88], 10 [55,74,85], 68.1 [86], 100 [41] 0.18 – 
100 

κe 0.205* [41], 0.787* [90], 0.932* [86], 0.949* [68], 
0.95* [91], 1.105* [88], 1.17* [92] 

0.2 – 
1.11 

bn 1.5 [55,68], 1.52 [74] 1.3 – 1.7 
bs 1.44 [74], 1.5 [55,68,89] 1.3 – 1.7 
bp 1.5 [55,68], 1.62 [74] 1.3 – 1.7 
t0+ 0.2594 [68], 0.26 [74,86], 0.363 [55], 0.38 [84,89], 

0.381*[92], 0.39 [43], 0.40*[88] 
0.25 - 
0.40 

k0,n (10− 11) 0.835 [68], 1.45 [86], 1.56 [74], 2 [84,85], 5.031 [41] 0.8 – 5.1 
k0,p (10− 11) 2 [84,85], 2.334 [41], 3.01 [86], 4.605 [68], 7.423 [74] 2 – 7.5 
Rcc (10− 3) 0.534 [74], 0.6 [87], 2 [55] 0.1 - 10 
cmax

s,n (103) 29.862 [85], 30.555 [41,89], 31.37 [84], 31.39 [74], 
31.92 [86], 33.133 [68] 

29 – 33.2 

cmax
s,p (103) 48.39 [74], 48.58 [86], 49.242 [85], 49.5 [89], 51.5 

[84], 51.554 [41], 63.104 [68] 
48 – 63.2  

* Typical value at room temperature. 
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average RMSE is, in this case, found to be 39 mV. In contrast, with an 
average of 27 mV the RMSE for the HP battery turns out to be somewhat 
lower, making the SPM potentially suitable for C-rate simulations not 
higher than 1C. From the SPM group it can be further concluded that the 
various approximations on top of the SPM with FDM do not lead to any 
significant gains in accuracy and simulation speed. For that reason, all 
SPM group (+ symbols) are overlapping. For the HP battery, the FDM 
leads to slightly better accuracies, but if neglecting this small difference, 
the method which is easiest to implement from a programming point of 
view can best be adopted. 

The ESPM group (O symbols), including all approximations, shows a 
slightly lower MSS in comparison to the SPM group, averaging 96% and 
94% for the HE and HP batteries, respectively. Because electrolyte dy-
namics are present, the ESPM outperforms the SPM with lower RMSE 
values and maintains fair accuracy (< 15 mV) until intermediate C-rates 
for the HE battery and for all C-rates for the HP battery. At the same 
time, the ESPM is not much inferior to the SPM when it comes to 
simulation speed, making the ESPM a favorable option for battery 
simulations, especially for real-time BMS applications. For the HE bat-
tery, the various approximations on top of the ESPM with FDM reveal no 
significant change in accuracy and simulation speed. However, among 
the ESPM group, noticeable accuracy differences are found for the HP 
battery, although the simulation speeds remain relatively unaffected. 
The preferred option is therefore using the FDM in combination with the 
ESPM. 

When analyzing the DFN group (✳ symbols), the various approxi-
mations have a significant influence on simulation accuracy and speed. 
When it comes to simulation speed, the DFN group is far slower in 
comparison to the SPM and ESPM groups. On the other hand, the 
simulation accuracy of the DFN group is generally more favorable with 
respect to the SPM and ESPM groups. This is due to the capability of 
simulating the concentration distribution across each electrode with 
multiple particles, as opposed to just one particle. However, when 
comparing the accuracy of the DFN group between the HE and HP 
batteries, the accuracy for the HE battery simulations is generally better, 

which is the other way around for the SPM and ESPM groups. One of the 
reasons for lower accuracy for the HP battery can be attributed to the 
fact that higher C-rates are used for the HP battery in comparison to the 
HE battery. For example, when comparing the DFN-group-accuracies for 
a 1C-rate for the HE and HP battery (Fig. 7c and d), the accuracies are 
very similar. Increasing C-rates subsequently lead to lower accuracies. 

Within the DFN group, the TPA method leads to the fastest simula-
tion speed, obtaining an average MSS of 30% and 27% for the HE and HP 
batteries, respectively. However, the TPA also has the highest RMSE 
compared to the other approximations. For the HE battery, the accuracy 
of the TPA method in combination with the DFN model is relatively 
similar to the ESPM method, but for the HP battery, the ESPM method 
outperforms the DFN model with TPA with most of its approximations 
and is, therefore, more favorable for HP batteries. The DFN model with 
HPA shows a lower MSS than the DFN model with TPA. Average MSS 
values of 27 and 24% for the HE and HP batteries are obtained, 
respectively. The HPA method achieves a relatively low RMSE across the 
entire C-rate range for both batteries and outperforms the SPM and 
ESPM groups. The DFN model with P2, P3 and P4 approximations shows 
for both batteries and all C-rates the lowest MSS of all simplifications. 
The average MSS for P2 is around 23% for the HE battery and 13% for 
the HP battery. Although the MSS for P2 – P4 is practically the same, the 
accuracy considerably increases with approximation order for both 
batteries and all C-rates. When using Padé approximation, it’s therefore 
advised to always use the highest order (P4 in this study). It also can be 
concluded that the MSS for the HP battery is generally lower than that of 
the HE battery due to the battery properties, resulting in fewer nodes for 
the grids for the HP battery. 

4.2.2. Dynamic cycle results 
Fig. 8 shows a general overview of WLTP drive-cycle simulation re-

sults from the reference model and a selection of simplifications for both 
the HE (Fig. 8a-b) and HP (Fig. 8c-d) batteries. As explained in Section 
3.2.2, mean discharge C-rates of 0.27 and 0.5C for the HE battery and 
0.54 and 1C for the HP battery have been simulated. From the difference 

Fig. 4. Simulation results of the reference DFN model (solid lines) and LIONSIMBA toolbox (symbols) [41] for three C-rates (1, 2, 3C). Battery voltage (a), positive 
and negative electrode voltage (b), solid phase lithium concentration (c), electrolyte phase lithium concentration (d), solid phase potential (e) and electrolyte phase 
potential (f). The states in (c)-(f) are shown for the end of discharge. 
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between the HE and HP simulation results, it can be observed that the 
HE battery shows larger voltage dynamics compared to the HP battery. 
This difference can be attributed to the difference in overpotentials 
between both batteries. The overpotential, which is a function of in-
ternal battery resistances, is lower for the HP battery in comparison to 
the HE battery. 

As illustrated in Fig. 3, the WLTP cycle is divided into four regions 
(A1 – A4). In Fig. 8, these four regions are also indicated. For the HE 

battery, the first two regions with lower C-rates show similar results 
among all simplifications compared to the reference model. However, 
certain simplifications, particularly the SPM and TPA, show relatively 
high discrepancies in the A3-region and are becoming even more 
apparent in the A4-region, where the C-rates are highest. The ESPM has 
poor accuracy in the A4-region for the HE battery at a 0.5C mean 
discharge rate. These simulation differences are especially visible in the 
figure insets. On the other hand, for the HP battery, all simplifications 

Fig. 5. Comparison of simulated voltage discharge curves between the reference DFN model and selected simplifications for both HE (a)-(c) and HP (d)-(f) batteries 
across different C-rates during CC-discharging and relaxation. 
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demonstrate a good agreement with the reference model, except for the 
SPM model, particularly in the last two regions of the WLTP cycle, which 
is visually amplified in the figure insets and is further illustrated over 
time in the error figure, shown in supplementary Fig. S5. This indicates 
that electrolyte dynamics, which are present in all simplifications except 
in the SPM, have a significant importance at higher C-rates and should 
not be neglected for accurate simulations. Furthermore, the models with 
HPA and Padé approximations are all in good agreement with the 
reference model, even at high C-rates. Therefore, the HPA, P3 and P4 
would be the preferred models to apply for a dynamic cycle such as the 
WLTP cycle. However, this is a conclusion without considering 

simulation speed. The figure insets in Fig. 8 clearly show that all models 
have less overpotential than the reference model. Such underestimation 
can likely be attributed to the characteristics of ROMs and approxima-
tions, which tend to disregard the nonlinear electrochemical behavior 
occurring in the battery. Consequently, this discrepancy in modeling 
accuracy tends to amplify as the C-rate increases. These tendencies to-
ward underestimation compromises the ability of ROMs to be used for e. 
g. fast charging profiles, as they may fail to predict lithium-plating. This 
underscores the importance of considering internal variables in battery 
modeling to mitigate inaccuracies and ensure more reliable predictions. 

The RMSE and MSS also have been calculated for the WLTP cycle and 

Fig. 6. RMSE between the reference model and a selection of simplifications using the full simulation (blue), discharge region (orange) and relaxation region 
(yellow) for the HE (a) and HP (b) battery. The different shades in the figure correspond to the C-rates indicated in the legend. 

Fig. 7. RMSE and MSS comparison at various C-rates for a HE (a)-(c) and a HP (d)-(f) battery. The total RMSE and MSS are calculated on both the CC-discharge and 
relaxation parts and are with respect to the reference model in combination with the FDM approach. 
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are shown in Fig. 9 for a HE battery at C-rates of 0.27 and 0.5C, as well as 
the HP battery at 0.54 and 1C. The SPM group (+ symbols) shows a 
relatively high overall RMSE for the HE battery, averaging 16 mV for a 
mean discharge C-rate of 0.27C and 33 mV for the 0.5C-rate. The 
calculated maximum errors for 0.27C and 0.50C are 63 mV and 118 mV, 
respectively. Nonetheless, for the simulations on the HP battery with the 
SPM group, the RMSE is reduced to 7 mV at 0.54C and 14 mV at 1C. 
However, the maximum errors remain relatively high, exceeding 23 mV 
and 45 mV for 0.54C and 1C, respectively. Despite the high MSS for the 
SPM group, averaging around 97%, the SPM is not suitable for simu-
lating the WLTP cycle for an HE battery due to it’s relatively large 
RMSEs. As with the CC-discharge simulations, the various approxima-
tions on top of the SPM do not give significant changes in RMSE and 
MSS, making those redundant in combination with the SPM. 

The ESPM group (O symbols) shows a good performance for both 
batteries, with an average RMSE of approximately 6 mV at 0.27C and 14 
mV at 0.5C for the HE battery. Similarly, the RMSE for the HP battery is 
1 mV at 0.54C and 2 mV at 1C. There is a noticeable improvement in 
terms of maximum errors when compared to the SPM group, with values 
of 32 mV at 0.27C and 59 mV at 0.5C for the HE battery and 4 mV at 
0.54C and 10 mV at 1C for the HP battery. The ESPM also offers a fast 
simulation speed compared to the reference DFN model, with an average 
MSS of 96% and 94% for the HE and HP batteries, respectively. When 
evaluating the various approximations in combination with the ESPM, 
then it can be seen that the approximations only lead to RMSE changes 
in the case of simulating a HE battery. Moreover, in terms of simulation 

speed, the approximations on top of the ESPM have a neglectable effect. 
The TPA method shows the highest error in comparison to the other 
methods. From the HPA, P3 and P4 approximations similar results with 
relatively high accuracy can be obtained, while the simulation speeds 
are also similar. Given the relatively low RMSE and high MSS, the ESPM 
with either FDM, HPA, P3 or P4 approximations is therefore advised. 

When analyzing the DFN group (✳ symbols), it immediately can be 
seen that simulation speeds are far slower with respect to the SPM and 
ESPM groups, as also concluded from the CC-discharge simulations in 
Section 4.2.1. Focusing on the HE battery in Fig. 9a and c, the TPA and 
HPA approximations show the highest MSS of all approximations for the 
DFN group. However, the TPA method underperforms when it comes to 
RMSE, which is similar to that of the ESPM group. This demonstrates 
that TPA is not suitable for fast load changes such as in dynamic cycles, 
resulting in lower accuracies and, therefore, a higher order model would 
be of advantage. The Padé approximations have a relatively low MSS, 
indicating simulation speeds similar to the reference model. As ex-
pected, the RMSE for P4 approximation is the lowest and is able to 
capture the dynamic processes in the battery. For the HP battery simu-
lations (Fig. 9b and d), an interesting phenomenon is visible in the MSS 
of the approximations on the DFN group. Due to the relatively low 
number nodes in the electrodes (Section 3.3) for the HP battery in 
comparison to the HE battery, the approximations on top of the DFN 
model result in low simulation speed improvement with respect to the 
reference model. When the number of nodes is low, approximations 
have less influence on computational speed. Therefore, using 

Fig. 8. Comparison of the simulated voltage between the reference model and a selection of simplifications for a HE (a)-(b) and HP (c)-(d) battery under various C- 
rates during application of the WLTP cycle. The insets show a magnification of a part of the A4-region between 1640 and 1750 s of the WLTP cycle. 
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approximations with a low number of nodes is not recommended. An 
average MSS of 1.5% for the 0.54C-rate and 5.2% at 1C are found. 

4.2.3. Summary of simulation results 
Table 9 shows a general model performance overview which is based 

on the simulation results. The various simplified models are shown in 
the left column, the mean simulation speed in the right column and the 
accuracy for the different use cases in-between. Note that the simulation 
speed is the mean value of the selected simulations in this study. The 
legend displays the four RMSE boundaries, which are categorized as 
excellent (A, green), good (B, yellow), fair (C, orange), and poor (D, red). 
For the MSS, the boundaries range from 1 to 4, corresponding to ratings 
from excellent (1) to poor (4). Table S1 lists the detailed RMSEs and MSS 
results for all ROMs and approximations. 

It can be concluded that the SPM has excellent calculation speed 
(97% MSS) with respect to the reference model. However, the SPM 
achieves poor accuracy (<15 mV RMSE) for simulating HE batteries 
under almost all conditions. The SPM accuracy slightly improves when 
simulating HP batteries at low C-rates for some operating conditions. On 
the other hand, the ESPM shows promising performance. The ESPM is 
simple and computationally excellent (≥96% MSS) compared to the 

reference model and performs good to fair up to intermediate C-rates for 
HE batteries and high C-rates for HP batteries. For dynamic cycle sim-
ulations on HP batteries, the ESPM performs excellent in terms of ac-
curacy and good and fair under normal and scaled C-rates for HE 
batteries. 

The approximation methods within the DFN group, specifically TPA 
and HPA, yield satisfactory results in terms of simulation speed. How-
ever, it’s worth noting that the models employing TPA reveal the highest 
errors across various use cases, followed by P2 and HPA. Overall, the 
DFN model using P3 and P4 approximations prove to be the most ac-
curate options. However, the simulation speeds are classified as poor. 

In general, there is no single solution that offers an ideal trade-off 
between accuracy, simulation speed and simplicity. The choice of a 
model should be evaluated based on the expected operating conditions 
such as temperature, C-rate, battery type and required simulation speed. 
Fig. 10 shows a flow diagram as a guide for selecting model simplifi-
cations, in which the various steps are shown on how to find the 
appropriate model. It is important to note that the flow diagram is 
intended solely for selecting the appropriate simplification. If simulation 
speed is not a primary consideration, then the reference model can be 
used. However, for BMS applications, generating training data sets or 

Fig. 9. RMSE and MSS comparison for all simplifications under simulation of the WLTP cycle for a HE (a)-(b) and HP (c)-(d) battery. The RMSE and MSS are 
calculated with respect to the reference DFN-model. 
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performing long-duration aging simulations, simulation speed is often a 
crucial factor, for which selecting the correct simplification becomes 
important. 

4.3. Sensitivity analysis results 

In the performed sensitivity analysis, the reference DFN model and 
both ROMs (ESPM and SPM) have been investigated. The ROMs neglect 
model features and are reduced in the number of parameters with 
respect to the DFN model, which could potentially lead to different 
parameter sensitivity. Fig. 11 shows the sensitivity analysis results, in 
which the sensitivity is classified in high (≥ 1× 10− 2), medium (≥ 1 ×
10− 4) and low (< 1× 10− 4). In Fig. 11a, b and c the DFN model pa-
rameters (25), the ESPM parameters (23) and SPM parameters (13) are 
shown, respectively. The sensitivity analysis reveals variations in 
parameter ranking and sensitivity among the three different models. For 
example, all geometric parameters for the solid electrodes, and partially 

transport, kinetics and concentration parameters were found to be 
highly sensitive for the DFN model. However, the level of sensitivity can 
vary depending on the model, as seen with parameters such as Rs,p and 
k0,n. Rs,p is highly sensitive for the DFN model and SPM, but medium 
sensitive for the ESPM. On the other hand, k0,n is a highly sensitive 
parameter for the DFN model, but medium sensitive for both the SPM 
and ESPM. 

The adoption of the same parameter values from the DFN model into 
both ROMs is feasible in some operation conditions since most of the 
highly sensitive parameters from the DFN model are also implemented 
into the ROMs, as shown in Fig. 11. This is evident when comparing 
simulations of discharges with relaxation and dynamic cycles at various 
C-rates for different battery types (Section 4.2). However, it is worth 
noting that when dealing with higher C-rates, the parameters for the 
ROMs may need to be re-estimated to maintain good accuracy. There-
fore, caution is advised when applying these parameters to various 

Table 9 
Performance overview of a selection of simplifications with respect to the reference DFN model for CC-discharging plus relaxation and a WLTP cycle at various C-rates 
for a HE and HP battery.  

Model CC-discharge + relaxation Dynamic cycle  

Accuracy 
(Low C-rate) 

Iapp = 0.25C (HE)
Iapp = 1.00C (HP)

Accuracy 
(Intermediate C-rate) 

Iapp = 0.5C (HE)
Iapp = 2.0C (HP)

Accuracy 
(High C-rate) 

Iapp = 1C (HE)
Iapp = 3C (HP)

Accuracy 
(Normal) 

Iapp,mean ∼ 0.27C (HE)
Iapp,mean ∼ 0.54C (HP)

Accuracy 
(Scaled) 

Iapp,mean ∼ 0.5C (HE)
Iapp,mean ∼ 1.0C (HP)

Mean MSS 

Cell Type HE HP HE HP HE HP HE HP HE HP All 

DFN FDM Reference model 
SPM FDM 

ESPM FDM 

DFN TPA 

DFN HPA 

DFN P2 

DFN P3 

DFN P4 

Boundaries   
RMSE [mV] ≤ 1 ≤ 8 ≤ 15 > 15 

MSS [%] ≥ 80 ≥ 50 ≥ 20 < 20 

Fig. 10. Flow diagram as a guide for selecting model simplifications.  
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operating conditions, as this could potentially result in overfitting, 
meaning that model performance is good under one condition, but 
inferior under deviating conditions. ROMs might not fully capture 
certain phenomena or dynamics that can have a significant impact on 
model behavior under specific conditions. Hence, it is important to 
carefully assess the applicability of ROMs and consider the specific 
context in which they are used. Furthermore, adopting the same 
parameter values from ROMs into DFN models is not feasible because 
DFN models typically require a more extensive set of parameters than 
ROMs. 

5. Conclusions 

This study undertakes a thorough analysis of model simplifications 
for the DFN model in LIBs. The research encompasses an evaluation of 
ROMs, including the SPM and ESPM, as well as various approximations 
for simulating the solid phase lithium concentration. A comparison of 
these simplifications against the adopted reference DFN model is carried 
out across a range of operating conditions and battery types. Sensitivity 
analyses are also performed to explore the behavior of model 
parameters. 

Simulation results demonstrate that ROMs offer advantages in terms 
of speed. The SPM, although fast in simulation time, tends to compro-
mise on accuracy. In contrast, the ESPM significantly enhances accu-
racy, making it suitable for use at intermediate C-rates in HE batteries 
and even at high C-rates in HP batteries, with commendable accuracy 
under CC-discharge, relaxation, and dynamic conditions. The improve-
ment of the SPM versus the ESPM underlines the importance of 

considering electrolyte dynamics. Combining the DFN model with 
different approximations enhances simulation speed, with improve-
ments of up to 40% in computational efficiency. However, the accuracy 
of these simulations varies with the type and approximation order. 
Higher-order approximations lead to better accuracy but may come at 
the expense of computational efficiency. The DFN model in combination 
with HPA strikes a favorable balance between accuracy and speed under 
most conditions, whereas the DFN model with P4 yields the highest level 
of accuracy among the approximations. Polynomial approximations 
typically outperform Padé approximations in terms of simulation speed 
but is the other way around when it comes to accuracy with P3 or higher. 
Additionally, the sensitivity of model parameters plays a pivotal role in 
selecting the appropriate model, influencing the level of accuracy 
achieved. 

The simulation results and comparisons illuminate the trade-offs 
between simulation speed and accuracy for two battery types and 
operating conditions. Each simplification method exhibits it’s own set of 
advantages and disadvantages, allowing for a selection based on specific 
requirements. It is crucial to carefully consider the choice of model and 
simplifications based on the specific battery type and operating condi-
tions, ensuring accurate capture of system dynamics and desired 
computational efficiency. 
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