001     1026458
005     20250701125847.0
024 7 _ |a 10.1016/j.ijrobp.2023.06.308
|2 doi
024 7 _ |a 0360-3016
|2 ISSN
024 7 _ |a 1879-355X
|2 ISSN
037 _ _ |a FZJ-2024-03407
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Petrich, C.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
111 2 _ |a 54. Jahrestagung der Deutschen Gesellschaft für Medizinphysik
|g DGMP
|c Magdeburg
|d 2023-09-27 - 2023-09-30
|w Germany
245 _ _ |a Towards Clinical Translation of Microbeam Radiation Therapy (MRT) with a Compact Source
260 _ _ |c 2023
336 7 _ |a Abstract
|b abstract
|m abstract
|0 PUB:(DE-HGF)1
|s 1721117404_10763
|2 PUB:(DE-HGF)
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Abstract
|2 DataCite
336 7 _ |a OTHER
|2 ORCID
520 _ _ |a Purpose/Objective(s)MRT is an innovative concept of spatially fractionated radiation therapy that has demonstrated substantially improved normal tissue tolerance while achieving local tumor control in a wealth of preclinical studies. In MRT a collimator shapes a few micrometers wide planar x-ray beams with a spacing of a few 100 µm. MRT has the potential to improve cancer treatment substantially. However, until now, only a few large 3rd generation synchrotrons provide beam parameters that would allow patient treatments and therefore, MRT has not yet become clinically available. For a clinical translation, compact x-ray sources are required, that produce high dose rate orthovoltage x-rays from a micrometer sized emitter.Materials/MethodsWe developed and built a first prototype of a line focus x-ray tube (LFxT) dedicated to preclinical MRT research. By exploiting the heat capacity limit, the LFxT can deliver dose rates above 100 Gy/s from a just 50 µm-wide focal spot without destroying the rapidly (>200 Hz) rotating x-ray target. A bespoke collimator splits the homogeneous x-ray field into 50 µm wide high-dose peaks separated by 350 µm wide low-dose troughs (valleys). While the prototype in our lab is restricted to a power of 90 kW and 10 Gy/s at 300 kVp, we have started the development of the first clinically usable LFxT-2 at 1.5 MW power and >100 Gy/s at 600 kVp beam quality. We investigated the clinical applicability of the LFxT-2 by performing retrospective treatment planning studies. In particular, we were examining, whether 600 kVp photons would suffice to meet clinical dose constraints in MRT treatments treatment scenarios for first clinical use of MRT. We coupled the open source platform 3D Slicer with an in-house developed dose calculation algorithm for MRT treatment planning. For comparability of spatially fractionated MRT doses with conventional broad beam treatments, the MRT dose was converted to equivalent uniform dose (EUD) and equivalent doses in 2-Gy-fractions (EQD2). The 3D Slicer RT toolkit enabled the dosimetric analysis based on dose volume histograms (DVHs).ResultsWe installed a preclinical prototype of the LFxT that is currently put into operation and commissioned. Simulations show the feasibility of the next generation LFxT-2 with more than 100 Gy/s peak dose rate. Planned MRT dose distributions with the LFxT-2 meet established radiotherapy dose constraints in many of the investigated clinical cases. However, treatment planning procedures are not yet optimal and require improvement.ConclusionIn a next step, we will build the LFxT-2 and aim for first clinical MRT trials at this source. In order to further improve calculated MRT dose distributions, we will implement inverse treatment planning techniques.
536 _ _ |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524)
|0 G:(DE-HGF)POF4-5241
|c POF4-524
|f POF IV
|x 0
536 _ _ |a DFG project 416790481 - Tumortherapie mit Mikrostrahlen an kompakter Strahlenquelle (416790481)
|0 G:(GEPRIS)416790481
|c 416790481
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Dimroth, A.
|0 P:(DE-Juel1)180572
|b 1
|e Corresponding author
700 1 _ |a Kraus, K. M.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Winter, J.
|0 P:(DE-Juel1)159329
|b 3
|u fzj
700 1 _ |a Matejcek, C.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Butzek, M.
|0 P:(DE-Juel1)133642
|b 5
|u fzj
700 1 _ |a Natour, G.
|0 P:(DE-Juel1)142196
|b 6
|u fzj
700 1 _ |a Ravichandran, M.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Zimmermann, M.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Aulenbacher, K.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Galek, M.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Wilkens, J.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Combs, S. E.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Bartzsch, S.
|0 P:(DE-HGF)0
|b 13
773 _ _ |a 10.1016/j.ijrobp.2023.06.308
|0 PERI:(DE-600)1500486-7
|y 2023
|g Vol. 117, no. 2, p. S38 - S39
|x 0360-3016
856 4 _ |u https://juser.fz-juelich.de/record/1026458/files/1-s2.0-S0360301623047429-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1026458/files/1-s2.0-S0360301623047429-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1026458/files/1-s2.0-S0360301623047429-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1026458/files/1-s2.0-S0360301623047429-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1026458/files/1-s2.0-S0360301623047429-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
909 C O |o oai:juser.fz-juelich.de:1026458
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)180572
910 1 _ |a Klinikum rechts der Isar
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)159329
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)133642
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)142196
910 1 _ |a Technische Universität München
|0 I:(DE-588b)36241-4
|k TUM
|b 8
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5241
|x 0
914 1 _ |y 2024
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-08-24
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-24
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2023-08-24
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J RADIAT ONCOL : 2022
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-24
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-24
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b INT J RADIAT ONCOL : 2022
|d 2023-08-24
920 1 _ |0 I:(DE-Juel1)ZEA-1-20090406
|k ZEA-1
|l Zentralinstitut für Technologie
|x 0
920 1 _ |0 I:(DE-Juel1)ICE-3-20101013
|k ICE-3
|l Troposphäre
|x 1
980 _ _ |a abstract
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ZEA-1-20090406
980 _ _ |a I:(DE-Juel1)ICE-3-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ITE-20250108


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21