001026466 001__ 1026466
001026466 005__ 20240712113153.0
001026466 020__ $$a978-3-95806-753-0
001026466 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-03410
001026466 037__ $$aFZJ-2024-03410
001026466 1001_ $$0P:(DE-Juel1)164857$$aTesch, Rebekka$$b0$$eCorresponding author$$ufzj
001026466 245__ $$aStructure and properties of electrochemical interfaces from first principles simulations$$f - 2024-06-20
001026466 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2024
001026466 300__ $$axvi, 161
001026466 3367_ $$2DataCite$$aOutput Types/Dissertation
001026466 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
001026466 3367_ $$2ORCID$$aDISSERTATION
001026466 3367_ $$2BibTeX$$aPHDTHESIS
001026466 3367_ $$02$$2EndNote$$aThesis
001026466 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1718869655_11415
001026466 3367_ $$2DRIVER$$adoctoralThesis
001026466 4900_ $$aSchriften des Forschungszentrums Jülich Reihe Energie & Umwelt / Energy & Environment$$v629
001026466 502__ $$aDissertation, RWTH Aachen University, 2024$$bDissertation$$cRWTH Aachen University$$d2024
001026466 520__ $$aThe transition to a sustainable energy system relies on the availability of high-performing and costeffective energy storage and conversion devices, such as batteries, fuel cells and electrolysers. The performance of these devices is directly related to the properties of the employed electrocatalyst materials. In order to develop electrochemical devices that can respond to societal, economical and environmental needs, catalyst materials must be improved in terms of activity, long-term stability and production cost. This requires significant progress in the fundamental understanding of relevant electrochemical processes. The majority of electrochemical processes take place at the interface between a solid electrode and a liquid electrolyte. Atomic-scale modeling is a powerful tool that can yield important information on structural, electronic and electrostatic properties of the interface. However, self-consistently modeling the two parts of the interface as well as their non-linear coupling is very challenging. Existing computational methods are limited in terms of accuracy and/or efficiency. The aim of this thesis is to address some of the limitations of existing methods and provide accurate computational methodologies for a realistic description of the local reaction conditions at the electrochemical interface and of the electrocatalytic processes. We focus on two aspects: (1) the efficient and accurate computation of the electronic structure of materials with strongly correlated electrons, such as d- or f -electrons, and (2) the self-consistentdescription of phenomena at electrochemical interfaces, including the effects of electrolyte species and electrode potential. For these purposes, two methods have been studied in detail in this thesis: (1) the DFT+U approach for the description of strongly correlated electrons and (2) the recently developed effective screening medium reference interaction site method (ESM-RISM) for the description of electrochemical interfaces. The conducted research enabled us to establish an improved DFT+U approach for the computation of the electronic structure of electrode materials. In this methodology, we derive the Hubbard U parameter from an existing first principles-based linear response method. Additionally, we use Wannier projectors instead of standard atomic orbitals projectors for more accurate counting of orbital occupations. The resulting scheme provides an improved electronic structure description of various d- and f -materials and allows, for example, for enhanced studies of catalytically active sites in oxide electrocatalysts. These results indicate that a correct electronic structure description is an important precondition for an accurate computational modeling of electrochemical interfaces.
001026466 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
001026466 8564_ $$uhttps://juser.fz-juelich.de/record/1026466/files/Energie_Umwelt_629.pdf$$yOpenAccess
001026466 8564_ $$uhttps://juser.fz-juelich.de/record/1026466/files/Energie_Umwelt_629.gif?subformat=icon$$xicon$$yOpenAccess
001026466 8564_ $$uhttps://juser.fz-juelich.de/record/1026466/files/Energie_Umwelt_629.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001026466 8564_ $$uhttps://juser.fz-juelich.de/record/1026466/files/Energie_Umwelt_629.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001026466 8564_ $$uhttps://juser.fz-juelich.de/record/1026466/files/Energie_Umwelt_629.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001026466 909CO $$ooai:juser.fz-juelich.de:1026466$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001026466 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164857$$aForschungszentrum Jülich$$b0$$kFZJ
001026466 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
001026466 9141_ $$y2024
001026466 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001026466 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001026466 920__ $$lyes
001026466 9201_ $$0I:(DE-Juel1)IEK-13-20190226$$kIEK-13$$lIEK-13$$x0
001026466 9801_ $$aFullTexts
001026466 980__ $$aphd
001026466 980__ $$aVDB
001026466 980__ $$aUNRESTRICTED
001026466 980__ $$abook
001026466 980__ $$aI:(DE-Juel1)IEK-13-20190226
001026466 981__ $$aI:(DE-Juel1)IET-3-20190226